Analysis of the accuracy of randomized rounding for integer linear programming problems
Diskretnaya Matematika, Tome 16 (2004) no. 4, pp. 3-13
Voir la notice de l'article provenant de la source Math-Net.Ru
We use randomised rounding to obtain an upper bound for the optimum value of the program
$$
\{\min\mathbf{cx}\mid A\mathbf x\geq\mathbf b,\mathbf x\geq\mathbf0,\ \mathbf x
\text{ is an integer vector}\},
$$
where $\mathbf b>0$, $\mathbf c\geq0$ are rational vectors and $A$ is an arbitrary rational matrix. Our bound generalises some known bounds for covering integer programs (that is, the same programs with the restriction that all elements of $A$ are non-negative).
The first and the second authors were supported, respectively, by the Royal Swedish Academy of Sciences and the Russian Foundation for Basic Research, grants 02–01–00713 and 04–01–00359.
@article{DM_2004_16_4_a0,
author = {A. S. Asratyan and N. N. Kuzyurin},
title = {Analysis of the accuracy of randomized rounding for integer linear programming problems},
journal = {Diskretnaya Matematika},
pages = {3--13},
publisher = {mathdoc},
volume = {16},
number = {4},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2004_16_4_a0/}
}
TY - JOUR AU - A. S. Asratyan AU - N. N. Kuzyurin TI - Analysis of the accuracy of randomized rounding for integer linear programming problems JO - Diskretnaya Matematika PY - 2004 SP - 3 EP - 13 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2004_16_4_a0/ LA - ru ID - DM_2004_16_4_a0 ER -
A. S. Asratyan; N. N. Kuzyurin. Analysis of the accuracy of randomized rounding for integer linear programming problems. Diskretnaya Matematika, Tome 16 (2004) no. 4, pp. 3-13. http://geodesic.mathdoc.fr/item/DM_2004_16_4_a0/