A case of the limit distribution of the number of cyclic vertices in a random mapping
Diskretnaya Matematika, Tome 16 (2004) no. 3, pp. 76-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the number of cyclic vertices in a random single-valued mapping of a set of size $n$ whose graph contains $m$ cycles. We obtain a theorem that describes the limit behaviour of this characteristic as $n\to\infty$, $m/\ln n\to\infty$, $m/\ln n=O(\ln n)$.This research was supported by grant 1758.2003.1 of the President of Russian Federation for support of the leading scientific schools.
@article{DM_2004_16_3_a3,
     author = {I. A. Cheplyukova},
     title = {A case of the limit distribution of the number of cyclic vertices in a random mapping},
     journal = {Diskretnaya Matematika},
     pages = {76--84},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2004_16_3_a3/}
}
TY  - JOUR
AU  - I. A. Cheplyukova
TI  - A case of the limit distribution of the number of cyclic vertices in a random mapping
JO  - Diskretnaya Matematika
PY  - 2004
SP  - 76
EP  - 84
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2004_16_3_a3/
LA  - ru
ID  - DM_2004_16_3_a3
ER  - 
%0 Journal Article
%A I. A. Cheplyukova
%T A case of the limit distribution of the number of cyclic vertices in a random mapping
%J Diskretnaya Matematika
%D 2004
%P 76-84
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2004_16_3_a3/
%G ru
%F DM_2004_16_3_a3
I. A. Cheplyukova. A case of the limit distribution of the number of cyclic vertices in a random mapping. Diskretnaya Matematika, Tome 16 (2004) no. 3, pp. 76-84. http://geodesic.mathdoc.fr/item/DM_2004_16_3_a3/

[1] Pavlov Yu. L., Sluchainye lesa, Karelskii nauchnyi tsentr RAN, Petrozavodsk, 1996

[2] Kolchin V. F., Sluchainye grafy, Nauka, Moskva, 2000 | MR

[3] Sachkov V. N., Veroyatnostnye metody v kombinatornom analize, Nauka, Moskva, 1978 | MR | Zbl