Boundaries of a random triangulation of a disk
Diskretnaya Matematika, Tome 16 (2004) no. 2, pp. 121-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider random triangulations of a disk with $k$ holes and $N$ triangles as $N\to\infty$. The coefficient $\lambda^m$, $\lambda>0$, is assigned to a triangulation with the total number of boundary edges equal to $m$. In the case of two boundaries, we separate three domains of variation of the parameter $\lambda$, and in each of them find the limit joint distribution of boundary lengths. For a greater number of boundaries, we give an algorithm to calculate the generating functions for the number of multi-rooted triangulations depending of the number of triangles and the lengths of boundaries. In Appendix, we discuss the relation between multi-rooted triangulations and unrooted triangulations, and give analogues of limit distributions for unrooted triangulations. This research was supported by the Russian Foundation for Basic Research, grant 02–01–00415.
@article{DM_2004_16_2_a9,
     author = {M. A. Krikun},
     title = {Boundaries of a random triangulation of a disk},
     journal = {Diskretnaya Matematika},
     pages = {121--135},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2004_16_2_a9/}
}
TY  - JOUR
AU  - M. A. Krikun
TI  - Boundaries of a random triangulation of a disk
JO  - Diskretnaya Matematika
PY  - 2004
SP  - 121
EP  - 135
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2004_16_2_a9/
LA  - ru
ID  - DM_2004_16_2_a9
ER  - 
%0 Journal Article
%A M. A. Krikun
%T Boundaries of a random triangulation of a disk
%J Diskretnaya Matematika
%D 2004
%P 121-135
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2004_16_2_a9/
%G ru
%F DM_2004_16_2_a9
M. A. Krikun. Boundaries of a random triangulation of a disk. Diskretnaya Matematika, Tome 16 (2004) no. 2, pp. 121-135. http://geodesic.mathdoc.fr/item/DM_2004_16_2_a9/

[1] Gulden Ya., Dzhekson D., Perechislitelnaya kombinatorika, Nauka, Moskva, 1990 | MR

[2] I. Goulden, D. Jackson., Combinatorial Enumeration, Wiley, 1983 | MR | Zbl

[3] Krikun M., Malyshev V. A., Random boundary of a planar map, Trends in Mathematics. Mathematics and Computer Science II. Algorithms, Trees, Combinatorics and Probabilities, Birkhäuser, Paris, 2002 | MR | Zbl

[4] Malyshev V. A., “Gibbsovskie i kvantovye diskretnye prostranstva”, Uspekhi matem. nauk, 56:5 (2001), 117–172 | MR | Zbl

[5] Tatt U. T., “Perechislenie ploskikh triangulyatsii”, Kibern. sb., 14 (1997), 25–45

[6] Tutte W. T., “The enumerative theory of planar maps”, Surveys of Combinatorial Theory, North–Holland, New York, 437–448 | MR

[7] Tutte W. T., “Chromatic sums for rooted planar triangulations, IV: The case $\lambda =\infty$”, Canad. J. Math., 25 (1973), 929–940 | MR | Zbl

[8] Bender E. A., Wormald N. C., “The asymptotic number of rooted nonseparable maps on a surface”, J. Comb. Theory, 49 (1988), 370–380 | DOI | MR | Zbl

[9] Bender E. A., Canfield E. R., Richmond L. B., “The asymptotic number of rooted nonseparable maps on a surface II: Enumeration by vertices and faces”, J. Comb. Theory, 63 (1993), 318–329 | DOI | MR | Zbl

[10] Polyakov A. M., Kalibrovochnye polya i struny, Izhevsk, Udmurtskii un-t, 1999 | Zbl