Spectral properties of a linear congruential generator in special cases
Diskretnaya Matematika, Tome 16 (2004) no. 2, pp. 54-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper for the linear congruent generator $$ z_{N+1}=G(z_N),\qquad N=1,2,\dots, $$ where $G(x)=\lambda x+c \pmod W$, $W=p^F$, $p$ is a prime number, we find a non-trivial lower bound for the least non-zero wave number $e_L(\lambda)$, the fundamental characteristic introduced in the spectral test to check for randomness on the base of analysis of the frequence of occurrences of $L$-tuples $(t_1,\ldots,t_L)$ in the sequence $(z_N)$. The lower bound obtained is of the form $W^{1/L-\delta}$, where $\delta$ is some variable explicitly depending on parameters which determine the factor $\lambda$. Under an appropriate choice of the parameters, $\delta$ can be made as small as desired. The factor $1/L$ cannot be changed for a greater one. Such bounds are necessary in studying classes of multipliers that pass the spectral test.
@article{DM_2004_16_2_a3,
     author = {A. S. Rybakov},
     title = {Spectral properties of a linear congruential generator in special cases},
     journal = {Diskretnaya Matematika},
     pages = {54--78},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2004_16_2_a3/}
}
TY  - JOUR
AU  - A. S. Rybakov
TI  - Spectral properties of a linear congruential generator in special cases
JO  - Diskretnaya Matematika
PY  - 2004
SP  - 54
EP  - 78
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2004_16_2_a3/
LA  - ru
ID  - DM_2004_16_2_a3
ER  - 
%0 Journal Article
%A A. S. Rybakov
%T Spectral properties of a linear congruential generator in special cases
%J Diskretnaya Matematika
%D 2004
%P 54-78
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2004_16_2_a3/
%G ru
%F DM_2004_16_2_a3
A. S. Rybakov. Spectral properties of a linear congruential generator in special cases. Diskretnaya Matematika, Tome 16 (2004) no. 2, pp. 54-78. http://geodesic.mathdoc.fr/item/DM_2004_16_2_a3/

[1] Vinogradov I. M., Osnovy teorii chisel, Nauka, Moskva, 1981 | MR

[2] Devenport G., Multiplikativnaya teoriya chisel, Nauka, Moskva, 1971 | MR

[3] Knut D., Poluchislennye algoritmy, t. 2, Mir, Moskva, 1977 | Zbl

[4] Korn G. Korn T., Spravochnik po matematike, Nauka, Moskva, 1973

[5] Prakhar K., Raspredelenie prostykh chisel, Mir, Moskva, 1967 | MR

[6] Chudnovsky G. V., “On the method of Tue–Siegel”, Ann. Math., 117 (1983), 325–382 | DOI | MR | Zbl

[7] Hata M., “Legendre type polynomials and irrationality measures”, J. Reine und Angewandte Math., 407 (1990), 99–125 | MR | Zbl

[8] Hata M., “A lower bound for rational approximations to $\pi$”, J. Number Theory, 43 (1993), 51–67 | DOI | MR | Zbl

[9] Hata M., “Rational approximations to $\pi$ and some other numbers”, Acta Arithmetica, 153 (1993), 335–349 | MR

[10] Heimonen A., On effective irrationality measures for some values of certain hypergeometric functions, Diss. Oulu Univ., Oulu, 1997 | MR