On the accuracy of approximation in the Poisson limit theorem
Diskretnaya Matematika, Tome 16 (2004) no. 2, pp. 148-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we find non-uniform bounds in the Poisson theorem. Let $I_1,\ldots,I_n$ be indicators of independent random events. We set $p_k=\mathsf P\{I_k=1\}=1-\mathsf P\{I_k=0\}$, $0\leq p_k\leq1$, $k=1,\ldots,n$. Let $$ B(x)=\mathsf P\biggl\{\sum_{k=1}^nI_k\leq x\biggr\}. $$ Let $b_k$ be the jump of the distribution function $B(x)$ at the point $k$. We also set $$ P_1=\frac1n\sum_{k=1}^np_k, \qquad P_2=\frac1n\sum_{k=1}^np_k^2. $$ Let $$ \pi_k=\frac{\lambda^k}{k!}e^{-\lambda}, \qquad k=0,1,2,\ldots, $$ be the jumps of the Poisson distribution function with parameter $\lambda\geq0$, and let $$ \Pi_\lambda(x)=\sum_{k\leq x}\pi_k $$ be the corresponding distribution function. An example of the results obtained in the paper is formulated as follows. For $\lambda=nP_1$ and $k\geq2+\lambda$, $$ |b_k-\pi_k|\leq\frac{nP_2}2\left(1+\frac{\lambda^2}{(k-2)^2}\right) e^{-\lambda}\left(\frac{\lambda e}{k-2}\right)^{k-2}, $$ and for $k>1+\lambda e$ $$ |B(k)-\Pi_\lambda(k)|\leq\frac{nP_2}2\left(1+\frac{\lambda^2}{(k-1)^2}\right) \frac{k-1}{k-1-\lambda e}e^{-\lambda}\left(\frac{\lambda e}{k-1}\right)^{k-1}. $$
@article{DM_2004_16_2_a11,
     author = {D. N. Karymov},
     title = {On the accuracy of approximation in the {Poisson} limit theorem},
     journal = {Diskretnaya Matematika},
     pages = {148--159},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2004_16_2_a11/}
}
TY  - JOUR
AU  - D. N. Karymov
TI  - On the accuracy of approximation in the Poisson limit theorem
JO  - Diskretnaya Matematika
PY  - 2004
SP  - 148
EP  - 159
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2004_16_2_a11/
LA  - ru
ID  - DM_2004_16_2_a11
ER  - 
%0 Journal Article
%A D. N. Karymov
%T On the accuracy of approximation in the Poisson limit theorem
%J Diskretnaya Matematika
%D 2004
%P 148-159
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2004_16_2_a11/
%G ru
%F DM_2004_16_2_a11
D. N. Karymov. On the accuracy of approximation in the Poisson limit theorem. Diskretnaya Matematika, Tome 16 (2004) no. 2, pp. 148-159. http://geodesic.mathdoc.fr/item/DM_2004_16_2_a11/

[1] Prokhorov Yu. V., “Asimptoticheskoe povedenie binomialnogo raspredeleniya”, Uspekhi matematicheskikh nauk, 8:3 (1953), 135–142 | MR

[2] Tsaregradskii I. P., “O ravnomernom priblizhenii binomialnogo raspredeleniya neogranichenno delimymi zakonami”, Teoriya veroyatnostei i ee primeneniya, 3:4 (1958), 470–474

[3] Shorgin S. Ya., “Approksimatsiya obobschennogo binomialnogo raspredeleniya”, Teoriya veroyatnostei i ee primeneniya, 22:4 (1977), 867–871 | MR | Zbl

[4] Le Cam L., “Remarques sur le thèoréme limite central dans les espaces localement convexes”, Les Probabilités sur les Structures Algébriques (Clermont-Ferrand, 1969), Actes Colloq. Internat. CNRS, 186, Éditions Centre Nat. Recherche Sci., Paris, 1970, 233–249 | MR

[5] Barbour A. D., Hall P., “On the rate of Poisson convergence”, Math. Proc. Cambridge Philos. Soc., 95 (1984), 473–480 | DOI | MR | Zbl

[6] Mikhailov V. G., “Yavnye otsenki v predelnykh teoremakh dlya summ sluchainykh indikatorov”, Obozrenie prikladnoi i promyshlennoi matematiki, 1:4 (1994), 580–617

[7] Barbour A. D., “Topics in Poisson approximation”, Stochastic Processes: Theory and Methods, eds. Shanbhag D. N. et al., North-Holland/Elsevier, Amsterdam, 2001, 79–115 | MR | Zbl

[8] Borovkov A. A., Teoriya veroyatnostei, Editorial URSS, Moskva, 2003