Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2004_16_2_a1, author = {V. L. Kurakin}, title = {Hopf algebras of linear recurring sequences}, journal = {Diskretnaya Matematika}, pages = {7--43}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2004_16_2_a1/} }
V. L. Kurakin. Hopf algebras of linear recurring sequences. Diskretnaya Matematika, Tome 16 (2004) no. 2, pp. 7-43. http://geodesic.mathdoc.fr/item/DM_2004_16_2_a1/
[1] Artamonov V. A., “Stroenie algebr Khopfa”, Itogi nauki i tekhniki. Algebra, geometriya, topologiya, 29, 1991, 3–63 | MR
[2] Bakhturin Yu. A., Osnovnye struktury sovremennoi algebry, Nauka, Moskva, 1990 | MR | Zbl
[3] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, ch. II, Gelios, Moskva, 2003
[4] Kurakin V. L., “Konvolyutsiya lineinykh rekurrentnykh posledovatelnostei”, Uspekhi matem. nauk, 48:4 (1993), 235–236 | MR | Zbl
[5] Kurakin V. L., “Stroenie algebr Khopfa lineinykh rekurrentnykh posledovatelnostei”, Uspekhi matem. nauk, 48:5 (1993), 177–178 | MR | Zbl
[6] Kurakin V. L., “Algebry Khopfa lineinykh rekurrentnykh posledovatelnostei nad kommutativnymi koltsami”, Trudy Vtorykh matematicheskikh chtenii MGSU, Moskva, 1994, 67–69
[7] Kurakin V. L., “Algebra Khopfa, dualnaya k algebre mnogochlenov nad kommutativnym koltsom”, Matem. zametki, 71:5 (2002), 677–685 | MR | Zbl
[8] Lidl R. Niderraiter G., Konechnye polya t. 2, Mir, Moskva, 1988 | Zbl
[9] Tsirler N., “Lineinye vozvratnye posledovatelnosti”, Kibern. sb., 6 (1963), 55–79
[10] Abe E., Hopf algebras, Cambridge Univ. Press, Cambridge, 1980 | MR | Zbl
[11] Abuhlail J. Y., Gómez-Torrecillas J., Wisbauer R., “Dual coalgebras of algebras over commutative rings”, J. Pure and Appl. Algebra, 153 (2000), 107–120 | DOI | MR | Zbl
[12] Abuhlail J. Y., Gómez-Torrecillas J., Lobillo F., “Duality and rational modules in Hopf algebras over commutative rings”, J. Algebra, 240 (2001), 165–184 | DOI | MR | Zbl
[13] Cerlienco L., Piras F., “On the continuous dual of a polynomial bialgebra”, Commun. Algebra, 19:10 (1991), 2707–2727 | DOI | MR | Zbl
[14] Cerruti U., Vaccarino F., “$R$-algebras of linear recurrent sequences”, J. Algebra, 175 (1995), 332–338 | DOI | MR | Zbl
[15] Chin W., Goldman J., “Bialgebras of lineary recursive sequences”, Commun. Algebra, 21:11 (1993), 3935–3952 | DOI | MR | Zbl
[16] Haukkanen P., “On a convolution of linear recurring sequences over finite fields. I, II”, J. Algebra, 149:1 (1992), 179–182 ; 164:2 (1994), 542–544 | DOI | MR | Zbl | DOI | MR | Zbl
[17] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl
[18] Kurakin V. L., Mikhalev A. V., Nechaev A. A., Tsypyschev V. N., “Linear and polylinear recurring sequences over abelian groups and modules”, J. Math. Sci., 102:6 (2000), 4598–4627 | MR
[19] Kurakin V. L., Nechaev A. A., “Quasi-Frobenius bimodules of functions on a semigroup”, Commun. Algebra, 29:9 (2001), 4079–4094 | DOI | MR | Zbl
[20] Larson R., Taft E. Y., “The algebraic structure of linearly recursive sequences under Hadamard product”, Israel J. Math., 72 (1990), 118–132 | DOI | MR | Zbl
[21] Montogomery S., Hopf algebras and their actions on rings, Amer. Math. Soc., Providence, 1993
[22] Peterson B., Taft E. Y., “The Hopf algebra of linear recursive sequences”, Aequat. Math., 20 (1980), 1–17 | DOI | MR | Zbl
[23] Snapper E., “Completely primary rings, I”, Ann. Math., 52:3 (1950), 666–693 | DOI | MR
[24] Sweedler M. F., Hopf algebras, 1969, Benjamin, New York | MR | Zbl
[25] Taft E., “Algebraic aspects of linearly recursive sequences”, Lect. Notes Pure Appl. Math., 158, 1994, 299–317 | MR | Zbl
[26] Taft E., “Linearly recursive tableaux”, Congr. Numerantium, 107 (1995), 33–36 | MR | Zbl
[27] Zierler N., Mills W. H., “Products of linear recurring sequences”, J. Algebra, 27:1 (1973), 147–157 | DOI | MR | Zbl