The method of boundary functionals for irregular structures
Diskretnaya Matematika, Tome 16 (2004) no. 1, pp. 121-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of boundary functionals suggested by A. A. Sapozhenko who applied it to a series of enumeration problems is successfully employed in the case of partially ordered sets with regular structure of the strata, for example, on the unit $n$-dimensional cube $B^n$. But partially ordered sets occurring in some problems, say, the three-valued $n$-dimensional lattice $E^n_3$, do not possess a regular structure. In this paper, the method of boundary functionals is extended to the case of such sets and is used to find the asymptotic behaviour of the number of antichains in the three central strata of $E^n_3$.This research was supported by the Russian Foundation for Basic Research, grant 01–01–00266.
@article{DM_2004_16_1_a9,
     author = {T. V. Andreeva},
     title = {The method of boundary functionals for irregular structures},
     journal = {Diskretnaya Matematika},
     pages = {121--139},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2004_16_1_a9/}
}
TY  - JOUR
AU  - T. V. Andreeva
TI  - The method of boundary functionals for irregular structures
JO  - Diskretnaya Matematika
PY  - 2004
SP  - 121
EP  - 139
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2004_16_1_a9/
LA  - ru
ID  - DM_2004_16_1_a9
ER  - 
%0 Journal Article
%A T. V. Andreeva
%T The method of boundary functionals for irregular structures
%J Diskretnaya Matematika
%D 2004
%P 121-139
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2004_16_1_a9/
%G ru
%F DM_2004_16_1_a9
T. V. Andreeva. The method of boundary functionals for irregular structures. Diskretnaya Matematika, Tome 16 (2004) no. 1, pp. 121-139. http://geodesic.mathdoc.fr/item/DM_2004_16_1_a9/

[1] Andreeva T. V., “O moschnosti sloev trekhznachnoi $n$-mernoi reshetki”, vychisl. matem. i matem. fiz., 43:10 (2003), 1560–1568 | MR

[2] Sapozhenko A. A., “O chisle antitsepei v ranzhirovannykh chastichno uporyadochennykh mnozhestvakh”, Diskretnaya matematika, 1:1 (1989), 74–93 | MR

[3] Sapozhenko A. A., “O chisle antitsepei v mnogosloinykh ranzhirovannykh mnozhestvakh”, Diskretnaya matematika, 1:2 (1989), 110–128 | MR

[4] Sapozhenko A. A., “Problema Dedekinda i metod granichnykh funktsionalov”, Matem. voprosy kibern., 9 (2000), 161–220 | MR

[5] Sapozhenko A. A., “O chisle svyaznykh podmnozhestv s zadannoi moschnostyu granitsy v dvudolnykh grafakh”, Metody diskretnogo analiza v reshenii kombinatornykh zadach, 45 (1987), 42–70 | MR | Zbl

[6] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, t. 1, Nauka, Moskva, 1967