On the complexity of the realization of Zhegalkin polynomials
Diskretnaya Matematika, Tome 16 (2004) no. 1, pp. 79-94
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that the complexity of a Zhegalkin polynomial of degree
$k$, $2\le k\le n$, does not exceed
$$
\sum_{i=0}^{k}\binom ni/\log_2\sum_{i=0}^{k}\binom ni(1+o(1)),
$$
(as $n\to\infty$) and asymptotically coincides with this number
for almost all such polynomials.
We also show that the complexity of any homogeneous Zhegalkin polynomial
of degree $k$ (for most values of $k$) does not exceed
$$
\binom nk/\log_2 \binom nk(1+o(1)),
$$
(as $n\to\infty$) and asymptotically coincides with this number
for almost all such polynomials.
@article{DM_2004_16_1_a5,
author = {R. N. Zabaluev},
title = {On the complexity of the realization of {Zhegalkin} polynomials},
journal = {Diskretnaya Matematika},
pages = {79--94},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2004_16_1_a5/}
}
R. N. Zabaluev. On the complexity of the realization of Zhegalkin polynomials. Diskretnaya Matematika, Tome 16 (2004) no. 1, pp. 79-94. http://geodesic.mathdoc.fr/item/DM_2004_16_1_a5/