Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2004_16_1_a4, author = {E. V. Gorbatov}, title = {The standard basis of a polynomial ideal over a commutative {Artinian} chain ring}, journal = {Diskretnaya Matematika}, pages = {52--78}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2004_16_1_a4/} }
E. V. Gorbatov. The standard basis of a polynomial ideal over a commutative Artinian chain ring. Diskretnaya Matematika, Tome 16 (2004) no. 1, pp. 52-78. http://geodesic.mathdoc.fr/item/DM_2004_16_1_a4/
[1] Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad kommutativnymi koltsami”, Diskretnaya matematika, 3:4 (1991), 105–127 | MR
[2] Nechaev A. A., Mikhailov D. A., “Kanonicheskaya sistema obrazuyuschikh unitarnogo polinomialnogo ideala nad kommutativnym artinovym tsepnym koltsom”, Diskretnaya matematika, 13:4 (2001), 3–42 | MR | Zbl
[3] Nechaev A. A., Mikhailov D. A., “Ispolzovanie KSO dlya resheniya sistem uravnenii nad koltsami”, XXII Mezhvedomstv. nauchno-tekhn. konf. “Problemy obespecheniya effektivnosti i ustoichivosti funktsionirovaniya slozhnykh tekhnicheskikh sistem”, t. 2, SVI RV, Serpukhov, 2003, 49–52
[4] Latyshev V. N., Kombinatornaya teoriya kolets, standartnye bazisy, MGU, Moskva, 1988 | MR
[5] Adams W., Loustaunau P., An introduction to Gröbner bases, Amer. Math. Soc., Providence, 1994 | MR
[6] Koks D., Littl Dzh., O'Shi D., Idealy, mnogoobraziya i algoritmy, Mir, Moskva, 2000
[7] Norton G. H., Salagean A., “Strong Gröbner bases and cyclic codes over a finite-chain ring”, Proc. Intern. Workshop on Coding and Cryptography, Paris, 2001, 8–12 | MR | Zbl
[8] Byrne E., Fitzpatrick P., “Gröbner bases over Galois rings with an application to decoding alternant codes”, J. Symbolic Comput., 31 (2001), 565–584 | DOI | MR | Zbl
[9] Robbiano L., “On the theory of graded structures”, J. Symbolic Comput, 2 (1986) | DOI | MR | Zbl
[10] Mora T., Seven variations on standard bases, Preprint, no. 45, Univ. de Genova, Dip. di Math., 1986
[11] Apel J., “Computational ideal theory in finitely generated extension rings”, J. Theoret. Computer Sci., 244 (2000), 1–33 | DOI | MR | Zbl
[12] Kronecker L., Vorlesungen über Zahlentheorie, Bd. 1, Teubner, Leipzig, 1901 | Zbl
[13] Krull W., “Algebraische Theorie der Ringe. II”, Math. Ann., 91 (1923), 1–46 | DOI | MR
[14] Kash F., Moduli i koltsa, Mir, Moskva, 1981 | MR