The standard basis of a polynomial ideal over a commutative Artinian chain ring
Diskretnaya Matematika, Tome 16 (2004) no. 1, pp. 52-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a standard basis of an ideal of the polynomial ring $R[X]=R[x_1,\ldots,x_k]$ over commutative Artinian chain ring $R$, which generalises a Gröbner base of a polynomial ideal over fields. We adopt the notion of the leading term of a polynomial suggested by D. A. Mikhailov and A. A. Nechaev, but using the simplification schemes introduced by V. N. Latyshev. We prove that any canonical generating system constructed by D. A. Mikhailov and A. A. Nechaev is a standard basis of the special form. We give an algorithm (based on the notion of $S$-polynomial) which constructs standard bases and canonical generating systems of an ideal. We define minimal and reduced standard bases and give their characterisations. We prove that a Gröbner base $\chi$ of a polynomial ideal over the field $\bar R=R/\operatorname{rad}(R)$ can be lifted to a standard basis of the same cardinality over $R$ with respect to the natural epimorphism $\nu\colon R[X]\to \bar R[X]$ if and only if there is an ideal $I\triangleleft R[X]$ such that $I$ is a free $R$-module and $\bar{I}=(\chi)$. The research was supported by the Russian Foundation for Basic Research, grant 02-01-00218, and by the President of the Russian Federation program of support of leading scientific schools, grant 1910.2003.1.
@article{DM_2004_16_1_a4,
     author = {E. V. Gorbatov},
     title = {The standard basis of a polynomial ideal over a commutative {Artinian} chain ring},
     journal = {Diskretnaya Matematika},
     pages = {52--78},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2004_16_1_a4/}
}
TY  - JOUR
AU  - E. V. Gorbatov
TI  - The standard basis of a polynomial ideal over a commutative Artinian chain ring
JO  - Diskretnaya Matematika
PY  - 2004
SP  - 52
EP  - 78
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2004_16_1_a4/
LA  - ru
ID  - DM_2004_16_1_a4
ER  - 
%0 Journal Article
%A E. V. Gorbatov
%T The standard basis of a polynomial ideal over a commutative Artinian chain ring
%J Diskretnaya Matematika
%D 2004
%P 52-78
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2004_16_1_a4/
%G ru
%F DM_2004_16_1_a4
E. V. Gorbatov. The standard basis of a polynomial ideal over a commutative Artinian chain ring. Diskretnaya Matematika, Tome 16 (2004) no. 1, pp. 52-78. http://geodesic.mathdoc.fr/item/DM_2004_16_1_a4/

[1] Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad kommutativnymi koltsami”, Diskretnaya matematika, 3:4 (1991), 105–127 | MR

[2] Nechaev A. A., Mikhailov D. A., “Kanonicheskaya sistema obrazuyuschikh unitarnogo polinomialnogo ideala nad kommutativnym artinovym tsepnym koltsom”, Diskretnaya matematika, 13:4 (2001), 3–42 | MR | Zbl

[3] Nechaev A. A., Mikhailov D. A., “Ispolzovanie KSO dlya resheniya sistem uravnenii nad koltsami”, XXII Mezhvedomstv. nauchno-tekhn. konf. “Problemy obespecheniya effektivnosti i ustoichivosti funktsionirovaniya slozhnykh tekhnicheskikh sistem”, t. 2, SVI RV, Serpukhov, 2003, 49–52

[4] Latyshev V. N., Kombinatornaya teoriya kolets, standartnye bazisy, MGU, Moskva, 1988 | MR

[5] Adams W., Loustaunau P., An introduction to Gröbner bases, Amer. Math. Soc., Providence, 1994 | MR

[6] Koks D., Littl Dzh., O'Shi D., Idealy, mnogoobraziya i algoritmy, Mir, Moskva, 2000

[7] Norton G. H., Salagean A., “Strong Gröbner bases and cyclic codes over a finite-chain ring”, Proc. Intern. Workshop on Coding and Cryptography, Paris, 2001, 8–12 | MR | Zbl

[8] Byrne E., Fitzpatrick P., “Gröbner bases over Galois rings with an application to decoding alternant codes”, J. Symbolic Comput., 31 (2001), 565–584 | DOI | MR | Zbl

[9] Robbiano L., “On the theory of graded structures”, J. Symbolic Comput, 2 (1986) | DOI | MR | Zbl

[10] Mora T., Seven variations on standard bases, Preprint, no. 45, Univ. de Genova, Dip. di Math., 1986

[11] Apel J., “Computational ideal theory in finitely generated extension rings”, J. Theoret. Computer Sci., 244 (2000), 1–33 | DOI | MR | Zbl

[12] Kronecker L., Vorlesungen über Zahlentheorie, Bd. 1, Teubner, Leipzig, 1901 | Zbl

[13] Krull W., “Algebraische Theorie der Ringe. II”, Math. Ann., 91 (1923), 1–46 | DOI | MR

[14] Kash F., Moduli i koltsa, Mir, Moskva, 1981 | MR