Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2004_16_1_a3, author = {D. A. Mikhailov and A. A. Nechaev}, title = {Solving systems of polynomial equations over {Galois--Eisenstein} rings with the use of the canonical generating systems of polynomial ideals}, journal = {Diskretnaya Matematika}, pages = {21--51}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2004_16_1_a3/} }
TY - JOUR AU - D. A. Mikhailov AU - A. A. Nechaev TI - Solving systems of polynomial equations over Galois--Eisenstein rings with the use of the canonical generating systems of polynomial ideals JO - Diskretnaya Matematika PY - 2004 SP - 21 EP - 51 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2004_16_1_a3/ LA - ru ID - DM_2004_16_1_a3 ER -
%0 Journal Article %A D. A. Mikhailov %A A. A. Nechaev %T Solving systems of polynomial equations over Galois--Eisenstein rings with the use of the canonical generating systems of polynomial ideals %J Diskretnaya Matematika %D 2004 %P 21-51 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2004_16_1_a3/ %G ru %F DM_2004_16_1_a3
D. A. Mikhailov; A. A. Nechaev. Solving systems of polynomial equations over Galois--Eisenstein rings with the use of the canonical generating systems of polynomial ideals. Diskretnaya Matematika, Tome 16 (2004) no. 1, pp. 21-51. http://geodesic.mathdoc.fr/item/DM_2004_16_1_a3/
[1] L. A. Bokut, Yu. Fong, V.-F. Ke, P. S. Kolesnikov, “Bazisy Grebnera i Grebnera–Shirshova v algebre i konformnye algebry”, Fundamentalnaya i prikladnaya matematika, 6:3 (2000), 669–706 | MR | Zbl
[2] B. Bukhberger, Dzh. Kollinz, R. Loos, Kompyuternaya algebra, Mir, Moskva, 1986 | MR
[3] A. A. Bukhshtab, Teoriya chisel, Prosveschenie, Moskva, 1966 | Zbl
[4] I. M. Vinogradov, Osnovy teorii chisel, Fizmatlit, Moskva, 1965 | MR | Zbl
[5] B. L. Van der Varden, Algebra, Nauka, Moskva, 1976 | MR
[6] M. M. Glukhov, V. P. Elizarov, A. A. Nechaev, Algebra, ch. I, Gelios, Moskva, 2003
[7] A. A. Zolotykh, A. A. Mikhalev, “Standartnye bazisy dvustoronnikh idealov svobodnykh assotsiativnykh algebr nad koltsami mnogochlenov”, Trudy pyatykh matem. chtenii MGSU, Moskva, 1997, 100–104
[8] Zolotykh A. A., Mikhalev A. A., “Algoritmy postroeniya standartnykh bazisov Grebnera–Shirshova idealov svobodnykh algebr nad kommutativnymi koltsami”, Programmirovanie, 6 (1998), 10–11 | MR | Zbl
[9] N. K. Iyudu, “Simplifikatornye svoistva slabo redutsiruemykh algebr”, Fundamentalnaya i prikladnaya matematika, 2:1 (1996), 133–146 | MR | Zbl
[10] D. Koks, Dzh. Littl, D. O'Shi, Idealy, mnogoobraziya i algoritmy: vvedenie v vychislitelnye aspekty algebraicheskoi geometrii i kommutativnoi algebry, Mir, Moskva, 2000
[11] V. N. Latyshev, Kombinatornaya teoriya kolets, standartnye bazisy, izd-vo MGU, Moskva, 1988 | MR | Zbl
[12] S. Leng, Algebra, Mir, Moskva, 1968 | MR
[13] D. A. Mikhailov, A. A. Nechaev, “Kanonicheskaya sistema obrazuyuschikh unitarnogo polinomialnogo ideala nad kommutativnym artinovym tsepnym koltsom”, Diskretnaya matematika, 13:4 (2001), 3–42 | MR | Zbl
[14] A. A. Nechaev, “O stroenii konechnykh kolets”, Matem. zametki, 10:6 (1971), 679–688 | Zbl
[15] A. A. Nechaev, “Lineinye rekurrentnye posledovatelnosti nad kommutativnymi koltsami”, Diskretnaya matematika, 3:4 (1991), 105–127 | MR | Zbl
[16] A. A. Nechaev, D. A. Mikhailov, “Ispolzovanie KSO dlya resheniya sistem uravnenii nad koltsami”, Problemy obespecheniya effektivnosti i ustoichivosti funktsionirovaniya slozhnykh tekhnicheskikh sistem, t. 2 (XXII Mezhvedomstv. nauchno-tekhn. konf.), SVI RV, Serpukhov, 2003, 49–52
[17] E. V. Pankratev, “O nekotorykh podkhodakh k postroeniyu teorii differentsialnykh bazisov Grebnera”, Matematicheskie metody i prilozheniya, izd-vo MGSU, Moskva, 2002, 132–135
[18] D. I. Pointkovskii, “Bazisy Grebnera i kogerentnost monomialnoi assotsiativnoi algebry”, Fundamentalnaya i prikladnaya matematika, 2:2 (1996), 501–509 | MR
[19] V. N. Sachkov, Vvedenie v kombinatornye metody diskretnoi matematiki, Nauka, Moskva, 1982 | MR | Zbl
[20] A. I. Shirshov, “Nekotorye algoritmicheskie problemy dlya algebr Li”, Sib. matem. zhurnal, 3 (1962), 292–296 | Zbl
[21] J. Apel, W. Lassner, “An extension of Buchberger's algorithm and calculations in enveloping fields of Lie algebras”, J. Symbolic Comput., 6 (1988), 361–370 | DOI | MR | Zbl
[22] J. Apel, “A Gröbner approach to involutive bases”, J. Symbolic Comput., 11 (1996), 1–16 | MR
[23] J. Apel, “Computational ideal theory in finitely generated extension rings”, Theor. Computer Sci., 244 (2000), 1–33 | DOI | MR | Zbl
[24] A. V. Astrelin, E. V. Pankratiev, “Groebner bases and involutive bases”, Abstracts IMACS ACA 2000, St. Petersburg, 66–67
[25] L. Bachmair, H. Ganzinger, “Buchberger's algirithm: A constraint-based completion procedure”, Lect. Notes Comput. Sci., 845, 1994, 285–301 | MR
[26] L. Bachmair A. Tiwari, “$D$-bases for polynomial ideals over commutative noetherian rings”, Lect. Notes Comp. Sci., 230, 1997, 5–20 | MR
[27] A. M. Ballantyne, D. S. Lancford, “New decision algorithms for finitely presented commutative semigroups”, Comput. Math. Appl., 7 (1981), 159–165 | DOI | MR
[28] D. Bayer, M. Stillman, “A criterion for detecting $m$-regularity”, Invent. Math., 87 (1987), 1–11 | DOI | MR | Zbl
[29] Yu. A. Blinkov, A. Yu. Zharkov, “Involutive approach to investigating polynomial systems”, Math. Comput. Simulation, 42 (1996), 323–332 | DOI | MR
[30] T. Becker, V. Weispfenning, Gröbner bases: a computational approach to commutative algebra, Springer, Berlin, 1993 | MR
[31] W. Boege, R. Gebauer, H. Kredel, “Some examples for solving systems of algebraic equations by calculating Groebner bases”, J. Symbolic Comput., 5 (1986), 83–98 | DOI | MR
[32] B. Buchberger, An algorithm for finding a basis for the residue class ring of a zero-dimensional polynomial ideal, Ph. D. Thesis, Univ. Innsbruck, 1965
[33] B. Buchberger, “A note on the complexity of constructing Groebner bases”, Lect. Notes Comput. Sci., 162, 1983, 137–145 | MR | Zbl
[34] B. Buchberger, “Groebner bases: An algorithmic method in polynomial ideal theory”, Recent Trends in Multidimensional System Theory, Reidel, Dordrecht, 1985, 184–232 | Zbl
[35] B. Buchberger, “A critical-pair completion algorithm for finitely generated ideals in rings”, Lect. Notes Comp. Sci., 171, 1984, 137–161 | MR | Zbl
[36] E. Byrne, P. Fitzpatrick, “Gröbner bases over Galois rings with an application to decoding alternant codes”, J. Symbolic Comput., 31 (2001), 565–584 | DOI | MR | Zbl
[37] S. Collart, M. Kalkbrener, D. Mall, “Converting Bases with the Gröbner walk”, J. Symbolic Comput., 24 (1997), 465–469 | DOI | MR | Zbl
[38] T. W. Dubé, “The structure of polynomial ideals and Gröbner bases”, SIAM J. Comput., 19 (1990), 750–775 | DOI | MR
[39] J. C. Faugère, P. Gianni, D. Lazard, T. Mora, “Efficient change of ordering for Gröbner bases of zero-dimensional ideals”, J. Symbolic Comp., 16 (1993), 329–344 | DOI | MR | Zbl
[40] J. C. Faugère, “A new efficient algorithm for computing Gröbner bases $f4$”, J. Pure and Appl. Algebra, 139 (1999), 61–88 | DOI | MR | Zbl
[41] J. C. Faugère, “A new efficient algorithm for computing Gröbner bases without reduction to zero $f5$”, ISSAC 2002, ACM Press, Paris, 2002 | MR | Zbl
[42] J. C. Faugère, J. Ars, An algebraic cryptanalysis of nonlinear filter generators using Gröbner bases, INRIA rapport, no. 4739, 2003
[43] A. Galligo, “Some algorithmic questions on ideals of differential operators”, Lect. Notes Comput. Sci., 204, 1985, 413–421 | MR | Zbl
[44] R. Gebauer, H. M. Möller, “On an installation of Buchberger's algorithm”, Computational Aspects of Commutative Algebra, Academic Press, New York, 1988, 141–152 | MR
[45] P. Gianni, T. Mora, Algebraic solution of systems of polynomial equations using Groebner bases, Lect. Notes Comput. Sci., 356, 1989 | MR | Zbl
[46] A. Giovini, T. Mora, G. Niesi, L. Robbiano, C. Taverso, ““One sugar cube, please,” or selection strategies in the Buchberger's algorithm”, ISSAC 1991, ACM Press, New York, 1991, 49–54 | Zbl
[47] D. Hartley, P. Tuckey, “Gröbner bases in Clifford and Grassman algebras”, J. Symbolic Comp., 18 (1995), 197–205 | DOI | MR
[48] D. Hilbert, “Über die Theorie der algebraischen Formen”, Math. Ann., 36 (1890), 473–534 | DOI | MR
[49] H. Hironaka, “Resolution of singularities of an algebraic variety over a field of characteristic zero, I, II”, Ann. Math., 79 (1964), 109–326 | DOI | MR | Zbl
[50] Kalkbrener M., Solving systems of algebraic equations by using Gröbner bases, Lect. Notes Comput. Sci., 378, 1987
[51] Kandri-Rody A., Kapur D., “Computing a Gröbner basis of a polynomial ideal over a Euclidean domain”, J. Symbolic Comput., 6 (1988), 37–57 | DOI | MR | Zbl
[52] Kandri-Rody A., Weispfenning V., “Non-commutative Gröbner bases in algebras of solvable type”, J. Symbolic Comput., 9 (1990), 1–26 | DOI | MR | Zbl
[53] Koblitz N., Algebraic aspects of cryptography, Springer, Berlin, 1997 | MR
[54] Kobayashi H., Moritsugu S., Hogan R. W., Solving systems of algebraic equations, Lect. Notes Comput. Sci., 358, 1989 | MR
[55] Kronecker L., Vorlesungen uber Zahlentheorie, Bd. 1, Teubner, Leipzig, 1901
[56] Krull W., “Algebraische Theorie der Ringe. II”, Math. Ann., 91 (1923), 1–46 | DOI | MR
[57] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl
[58] Landau S., “Polynomial time algorithms for Galois groups”, Lect. Notes Comput. Sci., 174, 1984, 225–236 | MR | Zbl
[59] Latyshev V. N., “An improved version of standard bases”, Proc. 12th Int. Conf. Formal Power Series Algebra Comb., MSU, 2000 | MR
[60] Lazard D., “Resolution des systemes d'equations algebriques”, Teor. Comp. Sci., 15 (1981), 77–110 | DOI | MR | Zbl
[61] Lazard D., “Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations”, Lect. Notes Comput. Sci., 162, 1983, 146–156 | MR | Zbl
[62] Miller J. L., “Analogs of Gröbner bases in polynomial rings over a ring”, J. Symbolic Comp., 21 (1996), 139–153 | DOI | MR | Zbl
[63] Möller H. M., Mora F., “Upper and lower bounds for the degree of Gröbner bases”, Lect. Notes Comput. Sci., 174, 1984, 172–183 | MR | Zbl
[64] Mora T., Seven variations on standard bases, Preprint, Univ. di Genova, Dip. di Mathematica, 1988
[65] Norton G. H., Salagean A., “Strong Gröbner bases and cyclic codes over a finite-chain ring”, Proc. Int. Workshop on Coding and Cryptography, Paris, 2001, 391–401 | MR
[66] Pan L., “On the $D$-bases of polynomial ideals over principal ideal domains”, J. Symbolic Comput., 7 (1988), 55–69 | DOI | MR
[67] Robbiano L., “Term orderings on the polynomial ring”, Lect. Notes Comput. Sci., 204, 1985, 513–517 | MR | Zbl
[68] Robbiano L., “On the theory of graded structures”, J. Symbolic Comp., 5 (1986), 139–170 | DOI | MR
[69] Stifter S., “A generalization of reduction rings”, J. Symbolic Comput., 6 (1987), 351–364 | DOI | MR
[70] Trinks W. L., “Über B. Buchbergers Verfahren, Systeme algebraischer Gleichungen zu lösen”, J. Number Theory, 10 (1978), 475–488 | DOI | MR | Zbl
[71] Winkler F., “On the complexity of the Gröbner bases algorithm over $K[x,y,z]$”, Lect. Notes Comput. Sci., 174, 1984, 184–194 | MR | Zbl
[72] Zacharias G., Generalized Gröbner bases in commutative polynomial rings, Bachelor Thesis, MIT, Boston, 1978