A formula for the stability radius of a vector $l_\infty$-extremal trajectory problem
Diskretnaya Matematika, Tome 16 (2004) no. 1, pp. 14-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a vector combinatorial optimisation problem with bottleneck sub-criteria, we give a formula for limiting perturbations of parameters of sub-criteria which do not yield new Pareto-optimal solutions.This research was supported by the State Program of Basic Research of Republic Belarus ‘Mathematical Structures’, grant 913/28.
@article{DM_2004_16_1_a2,
     author = {V. A. Emelichev and V. N. Krichko},
     title = {A formula for the stability radius of a vector $l_\infty$-extremal trajectory problem},
     journal = {Diskretnaya Matematika},
     pages = {14--20},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2004_16_1_a2/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - V. N. Krichko
TI  - A formula for the stability radius of a vector $l_\infty$-extremal trajectory problem
JO  - Diskretnaya Matematika
PY  - 2004
SP  - 14
EP  - 20
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2004_16_1_a2/
LA  - ru
ID  - DM_2004_16_1_a2
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A V. N. Krichko
%T A formula for the stability radius of a vector $l_\infty$-extremal trajectory problem
%J Diskretnaya Matematika
%D 2004
%P 14-20
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2004_16_1_a2/
%G ru
%F DM_2004_16_1_a2
V. A. Emelichev; V. N. Krichko. A formula for the stability radius of a vector $l_\infty$-extremal trajectory problem. Diskretnaya Matematika, Tome 16 (2004) no. 1, pp. 14-20. http://geodesic.mathdoc.fr/item/DM_2004_16_1_a2/

[1] V. A. Emelichev, M. K. Kravtsov, D. P. Podkopaev, “O kvaziustoichivosti traektornykh zadach vektornoi optimizatsii”, Matem. zametki, 63:1 (1998), 21–27 | MR | Zbl

[2] O. V. Avsyukevich, V. A. Emelichev, D. P. Podkopaev, “O radiuse ustoichivosti mnogokriterialnoi traektornoi zadachi na uzkie mesta”, Izv. AN Belarusi. Seriya fiz.-matem. nauk, 1998, no. 1, 112–116 | MR

[3] V. A. Emelichev, Yu. V. Stepanishina, “Kvaziustoichivost vektornoi nelineinoi traektornoi zadachi s paretovskim printsipom optimalnosti”, Izv. VUZov. Matematika, 2000, no. 12, 27–32 | MR | Zbl

[4] V. A. Emelichev, Yu. V. Stepanishina, “Kriterii kvaziustoichivosti vektornoi traektornoi zadachi s mazhoritarnym printsipom optimalnosti”, Kibernetika i sistemnyi analiz, 2001, no. 5, 63–71 | MR | Zbl

[5] V. A. Emelichev, A. M. Leonovich, “A sensitivity measure of the Pareto set in a vector $l_\infty$-extreme combinatorial problem”, Comput. Sci. J. Moldova, 9:3 (2001), 291–304 | MR | Zbl

[6] V. A. Emelichev, A. M. Leonovich,, “Quasistability of the vector $l_\infty$-extreme combinatorial problem with Pareto principle of optimality”, Izvestiya AN Respubliki Moldova. Matematika, 2001, no. 1, 44–50 | MR | Zbl

[7] V. A. Emelichev, D. P. Podkopaev, “O kolichestvennoi mere ustoichivosti v vektornoi zadache tselochislennogo lineinogo programmirovaniya”, Zhurnal vychisl. matem. i matem. fiziki, 38:11 (1998), 1801–1805 | MR | Zbl

[8] E. N. Gordeev, V. K. Leontev, “Obschii podkhod k issledovaniyu ustoichivosti reshenii v zadachakh diskretnoi optimizatsii”, Zhurnal vychisl. matem. i matem. fiziki, 36:1 (1996), 66–72 | MR | Zbl