Group codes and their nonassociative generalizations
Diskretnaya Matematika, Tome 16 (2004) no. 1, pp. 146-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a complete description (with the use of computation) of the best parameters of linear codes that correspond to the left ideals in the loop algebras $\mathbf F_qL$ for $q\in\{2,3,4,5\}$ and $|L|\le 7$, and also in the group algebras $\mathbf F_qG$ for groups $G$ of order $|G|\le12$. We distinguish the linearly optimal codes, the codes satisfying the Varshamov–Hilbert condition as well as those for which the Plotkin bound is attained. The results suggest that the research in codes constructed by using non-associative and non-semisimple non-commutative algebras can open new possibilities and deserves to be developed. This research was supported by Russian Foundation for Basic Research, grants 02–01–00218, 02–01–00687, and by grants 1910.2003.1 and 2358.2003.9 of President of Russian Federation for supporting the leading scientific schools. The last two authors thank University of Oviedo for the hospitality.
@article{DM_2004_16_1_a11,
     author = {S. Gonz\'alez and E. Couselo and V. T. Markov and A. A. Nechaev},
     title = {Group codes and their nonassociative generalizations},
     journal = {Diskretnaya Matematika},
     pages = {146--156},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2004_16_1_a11/}
}
TY  - JOUR
AU  - S. González
AU  - E. Couselo
AU  - V. T. Markov
AU  - A. A. Nechaev
TI  - Group codes and their nonassociative generalizations
JO  - Diskretnaya Matematika
PY  - 2004
SP  - 146
EP  - 156
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2004_16_1_a11/
LA  - ru
ID  - DM_2004_16_1_a11
ER  - 
%0 Journal Article
%A S. González
%A E. Couselo
%A V. T. Markov
%A A. A. Nechaev
%T Group codes and their nonassociative generalizations
%J Diskretnaya Matematika
%D 2004
%P 146-156
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2004_16_1_a11/
%G ru
%F DM_2004_16_1_a11
S. González; E. Couselo; V. T. Markov; A. A. Nechaev. Group codes and their nonassociative generalizations. Diskretnaya Matematika, Tome 16 (2004) no. 1, pp. 146-156. http://geodesic.mathdoc.fr/item/DM_2004_16_1_a11/

[1] Abashin A. S., “Lineinye rekursivnye MDR-kody razmernosti 2 i 3”, Diskretnaya matematika, 12:2 (2000), 140–153 | MR | Zbl

[2] Gonsales S., Kouselo E., Markov V. T., Nechaev A. A., “Rekursivnye MDR-kody i rekursivno differentsiruemye kvazigruppy”, Diskretnaya matematika, 10:2 (1998), 3–29 | MR

[3] Couselo E., Gonzalez S., Markov V., Nechaev A., “Recursive MDS-codes and recursively differentiable $k$-quasigroups”, Proc. Sixth Intern. Workshop on Algebraic and Combinatorial Coding Theory, Pskov, 1998, 78–84 | Zbl

[4] Couselo E., Gonzalez S., Markov V., Nechaev A., “Recursive MDS-codes”, Proc. WCC'99, Paris, 1999, 271–278

[5] Couselo E., Gonzalez S., Markov V., Nechaev A., “Linear recursive MDS-codes and Asturian codes”, Proc. WCC'01, Paris, 2001, 149–156 | MR

[6] Georgiades J., “Cyclic $(q+1,k)$-codes of odd order $q$ and even dimension $k$ are not optimal”, Atti Sem. Mat. Fis. Univ. Modena, 30 (1982), 284–285 | MR

[7] Heise W., Quattrocci P., Informations – und Codierungstheorie, Springer, Berlin, 1995 | MR

[8] MakVillyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, Moskva, 1979

[9] Nechaev A. A., Kuzmin A. S., Markov V. T., “Lineinye kody nad konechnymi koltsami i modulyami”, Fundamentalnaya i prikladnaya matematika, 3:1 (1997), 195–254 | MR | Zbl

[10] Chein O., Pflugfelder H. O., Smith J. D. H., Eds., Quasigroups and loops: theory and applications, Heldermann, Berlin, 1990 | MR

[11] Sabin R. E., Lomonaco S. J., “Metacyclic error-correcting codes.”, Appl. Algebra Eng. Commun. Comput., 6:3 (1995), 191–210 | DOI | MR | Zbl

[12] Sabin R. E., “On determining all codes in semi-simple group rings”, Applied algebra, algebraic algorithms and error-correcting codes, 10th International symposium, AAECC-10, Proceedings (San Juan de Puerto Rico, Puerto Rico, May 10–14, 1993), Lect. Notes Comput. Sci., 673, Springer-Verlag, Berlin, 1993, 279–290 | MR | Zbl

[13] Sabin R. E., “An ideal structure for some quasi-cyclic error-correcting codes”, Finite fields, coding theory, and advances in communications and computing, Proceedings of the international conference on finite fields, coding theory, and advances in communications and computing (University of Nevada, Las Vegas, USA, August 7–10, 1991), Lect. Notes Pure Appl. Math., 141, eds. G. L. Mullen et al., Marcel Dekker, Inc., New York, 1993, 183–194 | MR | Zbl