On the probabilities of large deviations of the Shepp statistic
Diskretnaya Matematika, Tome 16 (2004) no. 1, pp. 140-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find the asymptotic behaviour of the probability of large deviations $\mathsf P(W_{L,L}\geq\theta L)$ of the Shepp statistic $W_{L,L}$ which is equal to the maximum of fluctuations of the random walk $$ S_n=\sum_{i=1}^n\xi_i $$ in the window of width $L$ moving in the interval $[1,2L]$ as $L\to\infty$ and $\theta$ is a constant. We assume that $\xi_1,\xi_2,\ldots$ are independent identically distributed random variables with non-lattice distribution satisfying the right-side Cramer condition. We show that the asymptotics are of the form $H_\theta L\mathsf P(S_l\geq\theta L)$, where $H_\theta$ is a constant depending on $\theta$. This research was supported by the Russian Foundation for Basic Research, grant 01–0100–649.
@article{DM_2004_16_1_a10,
     author = {A. M. Kozlov},
     title = {On the probabilities of large deviations of the {Shepp} statistic},
     journal = {Diskretnaya Matematika},
     pages = {140--145},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2004_16_1_a10/}
}
TY  - JOUR
AU  - A. M. Kozlov
TI  - On the probabilities of large deviations of the Shepp statistic
JO  - Diskretnaya Matematika
PY  - 2004
SP  - 140
EP  - 145
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2004_16_1_a10/
LA  - ru
ID  - DM_2004_16_1_a10
ER  - 
%0 Journal Article
%A A. M. Kozlov
%T On the probabilities of large deviations of the Shepp statistic
%J Diskretnaya Matematika
%D 2004
%P 140-145
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2004_16_1_a10/
%G ru
%F DM_2004_16_1_a10
A. M. Kozlov. On the probabilities of large deviations of the Shepp statistic. Diskretnaya Matematika, Tome 16 (2004) no. 1, pp. 140-145. http://geodesic.mathdoc.fr/item/DM_2004_16_1_a10/

[1] Petrov V. V., “O veroyatnostyakh bolshikh uklonenii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatnostei i ee primeneniya, 10 (1965), 310–322 | MR | Zbl

[2] Bahadur R. R., Ranga Rao R., “On deviations of the sample mean”, Ann. Math. Statist., 31:4 (1960), 1015–1027 | DOI | MR | Zbl

[3] Piterbarg V. I., “O bolshikh skachkakh sluchainogo bluzhdaniya”, Teoriya veroyatnostei i ee primeneniya, 36:1 (1991), 54–64 | MR | Zbl

[4] Dovgalyuk V. V., Piterbarg V. I., “Bolshie ukloneniya traektorii puassonovskogo protsessa”, Veroyatnostnye protsessy i ikh prilozheniya, MIEM, Moskva, 1989, 112–117 | MR

[5] Piterbarg V. I., Kozlov A. M., “O bolshikh skachkakh sluchainogo bluzhdaniya”, Teoriya veroyatnostei i ee primeneniya, 47:4 (2002), 803–814 | MR

[6] Piterbarg V. I., Asimptoticheskie metody v teorii gaussovskikh sluchainykh protsessov i polei, Izd-vo MGU, Moskva, 1988

[7] Kozlov M. V., “O chastichnykh summakh Erdesha–Reni: bolshie ukloneniya, uslovnoe povedenie”, Teoriya veroyatnostei i ee primeneniya, 46:4 (2001), 678–696 | MR | Zbl

[8] Deheuvels P., Devroye L., “Limit laws of Erdős–Renyi–Shepp type”, Ann. Probab., 15:4 (1987), 1363–1386 | DOI | MR | Zbl