Inert matrices and matchings in partially oriented trees
Diskretnaya Matematika, Tome 15 (2003) no. 4, pp. 119-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study inert matrices which remain degenerate or non-degenerate under any replacement of their non-zero elements by other non-zero numbers. In partially oriented graphs, we consider non-oriented matchings. We discuss a quantum model which fit these matchings. We prove that both perfect and imperfect oriented trees (that is, possessing and not possessing a perfect matching) may be obtained from the elementary ones with the use of some operations, that is, the set of the perfect trees and the set of the imperfect trees are free finitely generated algebraic structures.
@article{DM_2003_15_4_a7,
     author = {V. A. Kolmykov},
     title = {Inert matrices and matchings in partially oriented trees},
     journal = {Diskretnaya Matematika},
     pages = {119--125},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2003_15_4_a7/}
}
TY  - JOUR
AU  - V. A. Kolmykov
TI  - Inert matrices and matchings in partially oriented trees
JO  - Diskretnaya Matematika
PY  - 2003
SP  - 119
EP  - 125
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2003_15_4_a7/
LA  - ru
ID  - DM_2003_15_4_a7
ER  - 
%0 Journal Article
%A V. A. Kolmykov
%T Inert matrices and matchings in partially oriented trees
%J Diskretnaya Matematika
%D 2003
%P 119-125
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2003_15_4_a7/
%G ru
%F DM_2003_15_4_a7
V. A. Kolmykov. Inert matrices and matchings in partially oriented trees. Diskretnaya Matematika, Tome 15 (2003) no. 4, pp. 119-125. http://geodesic.mathdoc.fr/item/DM_2003_15_4_a7/

[1] Fudzinaga S., Metod molekulyarnykh orbitalei, Moskva, 1983

[2] Tsvetkovich D., Dub M., Zakhs Kh., Spektry grafov. Teoriya i primenenie, Naukova Dumka, Kiev, 1984 | MR

[3] Sinanoglu O., Sovremennaya kvantovaya khimiya, 1; 2, Мир, Москва, 1968

[4] Lovas L., Plammer M., Prikladnye zadachi teorii grafov. Teoriya parosochetanii v matematike, fizike, khimii, Mir, Moskva, 1998

[5] Stankevich I. V., Skvortsova M. I., Kolmykov V. A., Subbotin V. F., Mnuchin V. B., “Spectral graph theory in chemistry”, Mathematical methods in contemporary chemistry, Gordon Breach, New York, 1996, 101–141