On glueing states of an automaton
Diskretnaya Matematika, Tome 15 (2003) no. 4, pp. 66-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem on glueing states of an automaton which often arises in investigations of adaptive experiments. We give several estimates of time of glueing $r$ states of an automaton with $ n $ states. The research was supported by the Russian Foundation for Basic Research, grant 02–01–00162.
@article{DM_2003_15_4_a3,
     author = {A. E. Kirnasov},
     title = {On glueing states of an automaton},
     journal = {Diskretnaya Matematika},
     pages = {66--83},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2003_15_4_a3/}
}
TY  - JOUR
AU  - A. E. Kirnasov
TI  - On glueing states of an automaton
JO  - Diskretnaya Matematika
PY  - 2003
SP  - 66
EP  - 83
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2003_15_4_a3/
LA  - ru
ID  - DM_2003_15_4_a3
ER  - 
%0 Journal Article
%A A. E. Kirnasov
%T On glueing states of an automaton
%J Diskretnaya Matematika
%D 2003
%P 66-83
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2003_15_4_a3/
%G ru
%F DM_2003_15_4_a3
A. E. Kirnasov. On glueing states of an automaton. Diskretnaya Matematika, Tome 15 (2003) no. 4, pp. 66-83. http://geodesic.mathdoc.fr/item/DM_2003_15_4_a3/

[1] Kudryavtsev V. B., Aleshin S. V., Podkolzin A. S., Vvedenie v teoriyu avtomatov, Nauka, Moskva, 1985 | MR

[2] Sokolovskii M. N., “Slozhnost porozhdeniya podstanovok i eksperimenty s avtomatami”, Diskretnyi analiz, 29, 1976, 68–86 | MR | Zbl

[3] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, Mir, Moskva, 1984

[4] Hibbard T. N., “Least upper bounds on minimal terminal state experiments for two classes of sequential machines”, J. Assoc. Comput. Mach., 8 (1961), 601–612