On glueing states of an automaton
Diskretnaya Matematika, Tome 15 (2003) no. 4, pp. 66-83
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem on glueing states of an automaton which often arises in investigations of adaptive experiments. We give several estimates of time of glueing $r$ states of an automaton with $ n $ states. The research was supported by the Russian Foundation for Basic Research, grant 02–01–00162.
@article{DM_2003_15_4_a3,
     author = {A. E. Kirnasov},
     title = {On glueing states of an automaton},
     journal = {Diskretnaya Matematika},
     pages = {66--83},
     year = {2003},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2003_15_4_a3/}
}
TY  - JOUR
AU  - A. E. Kirnasov
TI  - On glueing states of an automaton
JO  - Diskretnaya Matematika
PY  - 2003
SP  - 66
EP  - 83
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/DM_2003_15_4_a3/
LA  - ru
ID  - DM_2003_15_4_a3
ER  - 
%0 Journal Article
%A A. E. Kirnasov
%T On glueing states of an automaton
%J Diskretnaya Matematika
%D 2003
%P 66-83
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/DM_2003_15_4_a3/
%G ru
%F DM_2003_15_4_a3
A. E. Kirnasov. On glueing states of an automaton. Diskretnaya Matematika, Tome 15 (2003) no. 4, pp. 66-83. http://geodesic.mathdoc.fr/item/DM_2003_15_4_a3/

[1] Kudryavtsev V. B., Aleshin S. V., Podkolzin A. S., Vvedenie v teoriyu avtomatov, Nauka, Moskva, 1985 | MR

[2] Sokolovskii M. N., “Slozhnost porozhdeniya podstanovok i eksperimenty s avtomatami”, Diskretnyi analiz, 29, 1976, 68–86 | MR | Zbl

[3] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, Mir, Moskva, 1984

[4] Hibbard T. N., “Least upper bounds on minimal terminal state experiments for two classes of sequential machines”, J. Assoc. Comput. Mach., 8 (1961), 601–612