Limit theorems and testing hypotheses on Markov chains
Diskretnaya Matematika, Tome 15 (2003) no. 4, pp. 35-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the optimal tests based on the likelihood ratio for discriminating between two Markov chains having a common finite phase space $\mathcal S$. Their risks are expressed in terms of probabilities of large deviations for sum of random variables defined on another Markov chain with the phase space $\mathcal S\times\mathcal S$. Both simple and composite alternatives are considered. The established asymptotic formulas for the considered risks are precise.
@article{DM_2003_15_4_a2,
     author = {A. V. Nagaev},
     title = {Limit theorems and testing hypotheses on {Markov} chains},
     journal = {Diskretnaya Matematika},
     pages = {35--65},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2003_15_4_a2/}
}
TY  - JOUR
AU  - A. V. Nagaev
TI  - Limit theorems and testing hypotheses on Markov chains
JO  - Diskretnaya Matematika
PY  - 2003
SP  - 35
EP  - 65
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2003_15_4_a2/
LA  - ru
ID  - DM_2003_15_4_a2
ER  - 
%0 Journal Article
%A A. V. Nagaev
%T Limit theorems and testing hypotheses on Markov chains
%J Diskretnaya Matematika
%D 2003
%P 35-65
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2003_15_4_a2/
%G ru
%F DM_2003_15_4_a2
A. V. Nagaev. Limit theorems and testing hypotheses on Markov chains. Diskretnaya Matematika, Tome 15 (2003) no. 4, pp. 35-65. http://geodesic.mathdoc.fr/item/DM_2003_15_4_a2/

[1] Horn R. A., Johnson C. R., Matrix analysis, Cambridge Univ. Press, Cambridge, 1986 | MR

[2] Nagaev A. V., Limit theorems under testing hypotheses, UMK, Toruń, 1996

[3] Dembo A., Zeitouni O., Large deviation techniques and applications, Jones Bartlett, Boston–London, 1993 | MR | Zbl

[4] Scheffel P., von Weizsäcker H., “On risk rates and large deviations in finite Markov chain experiments”, Math. Methods Statist., 6:3 (1997), 293–312 | MR | Zbl

[5] Nagaev A. V., “An asymptotic formula for the Bayes risk in discriminating between two Markov chains”, J. Appl. Probab., 38A (2001), 131–141 | DOI | MR | Zbl

[6] Nagaev A. V., “The Bayes risk asymptotics under testing composite hypotheses on Markov chains”, Probabilistic methods in discrete mathematics, VSP, Utrecht, 2002, 273–290

[7] Nagaev A. V., “An asymptotic formula for the Neyman–Pearson risk in discriminating between two Markov chains”, J. Math. Sci., 111:3 (2002), 3592–3600 | DOI | MR | Zbl

[8] Nagaev S. V., “Utochneniya predelnykh teorem dlya odnorodnykh tsepei Markova”, Teoriya veroyatnostei i ee primeneniya, 6:1 (1961), 67–86 | MR | Zbl

[9] Sirazhdinov S. Kh., Formanov Sh. K., Predelnye teoremy dlya summ sluchainykh vektorov, svyazannykh v tsep Markova, Fan, Tashkent, 1979 | MR

[10] Szewczak Z., A remark on a large deviation theorem for Markov chain with a finite number of states, Preprint, Faculty of Math. and Informatics, UMK, Toruń, 2001

[11] Dub Dzh. L., Sluchainye protsessy, IL, Moskva, 1956

[12] Stepanov V. E., “Nekotorye statisticheskie kriterii dlya tsepei Markova”, Teoriya veroyatnostei i ee primeneniya, 2:1 (1957), 143–144 | Zbl