On the number and structure of sum-free sets in a segment of positive integers
Diskretnaya Matematika, Tome 15 (2003) no. 4, pp. 141-147
Voir la notice de l'article provenant de la source Math-Net.Ru
A set $A$ of integers is called sum-free if $a+b\notin A$ for any $a,b\in A$. For any real numbers $q\le p$ we denote by $[q,p]$ the set of real numbers $x$ such that $q\le x\le p$. Let $S(t,n)$ stand for the family of all
sum-free subsets $A\subseteq[t,n]$, and $s(t,n)=|S(t,n)|$.
We prove that
\begin{equation*}
s(t,n)=O(2^{n/2})
\end{equation*}
for $t\ge n^{3/4}\log n$, where $\log t=\log_2t$.
This research was supported by the Russian Foundation for Basic Research, grant 01–01–00266.
@article{DM_2003_15_4_a10,
author = {K. G. Omel'yanov and A. A. Sapozhenko},
title = {On the number and structure of sum-free sets in a segment of positive integers},
journal = {Diskretnaya Matematika},
pages = {141--147},
publisher = {mathdoc},
volume = {15},
number = {4},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2003_15_4_a10/}
}
TY - JOUR AU - K. G. Omel'yanov AU - A. A. Sapozhenko TI - On the number and structure of sum-free sets in a segment of positive integers JO - Diskretnaya Matematika PY - 2003 SP - 141 EP - 147 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2003_15_4_a10/ LA - ru ID - DM_2003_15_4_a10 ER -
K. G. Omel'yanov; A. A. Sapozhenko. On the number and structure of sum-free sets in a segment of positive integers. Diskretnaya Matematika, Tome 15 (2003) no. 4, pp. 141-147. http://geodesic.mathdoc.fr/item/DM_2003_15_4_a10/