On the number and structure of sum-free sets in a segment of positive integers
Diskretnaya Matematika, Tome 15 (2003) no. 4, pp. 141-147

Voir la notice de l'article provenant de la source Math-Net.Ru

A set $A$ of integers is called sum-free if $a+b\notin A$ for any $a,b\in A$. For any real numbers $q\le p$ we denote by $[q,p]$ the set of real numbers $x$ such that $q\le x\le p$. Let $S(t,n)$ stand for the family of all sum-free subsets $A\subseteq[t,n]$, and $s(t,n)=|S(t,n)|$. We prove that \begin{equation*} s(t,n)=O(2^{n/2}) \end{equation*} for $t\ge n^{3/4}\log n$, where $\log t=\log_2t$. This research was supported by the Russian Foundation for Basic Research, grant 01–01–00266.
@article{DM_2003_15_4_a10,
     author = {K. G. Omel'yanov and A. A. Sapozhenko},
     title = {On the number and structure of sum-free sets in a segment of positive integers},
     journal = {Diskretnaya Matematika},
     pages = {141--147},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2003_15_4_a10/}
}
TY  - JOUR
AU  - K. G. Omel'yanov
AU  - A. A. Sapozhenko
TI  - On the number and structure of sum-free sets in a segment of positive integers
JO  - Diskretnaya Matematika
PY  - 2003
SP  - 141
EP  - 147
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2003_15_4_a10/
LA  - ru
ID  - DM_2003_15_4_a10
ER  - 
%0 Journal Article
%A K. G. Omel'yanov
%A A. A. Sapozhenko
%T On the number and structure of sum-free sets in a segment of positive integers
%J Diskretnaya Matematika
%D 2003
%P 141-147
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2003_15_4_a10/
%G ru
%F DM_2003_15_4_a10
K. G. Omel'yanov; A. A. Sapozhenko. On the number and structure of sum-free sets in a segment of positive integers. Diskretnaya Matematika, Tome 15 (2003) no. 4, pp. 141-147. http://geodesic.mathdoc.fr/item/DM_2003_15_4_a10/