On asymptotic expansions for the distribution of the number of cycles in a random permutation
Diskretnaya Matematika, Tome 15 (2003) no. 3, pp. 117-127
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain explicit formulas for the coefficients of asymptotic expansions in the domain of large deviations for the distributions of the number of cycles $\nu_n$ in a random permutation of degree $n$, that is, for the probability $\mathsf P\{\nu_n=N\}$ under the condition that $n,N\to\infty$ in such a way that
$1\alpha_0\le\alpha=n/N\le\alpha_1\infty$, where $\alpha_0$, $\alpha_1$ are constants. These formulas express the coefficients in terms of cumulants of the random variable which has the distribution of the logarithmic series with specially chosen parameter. For the cumulants of the third and fourth orders we give the corresponding values. We discuss the accuracy of the obtained approximations. If $n,N\to\infty$
so that $0\gamma_0\le\gamma=N/\ln n\le\gamma_1\infty$, where $\gamma_0$,
$\gamma_1$ are constants, we give asymptotic estimates of the probabilities
$\mathsf P\{\nu_n=N\}$, $\mathsf P\{\nu_n\le N\}$, $\mathsf P\{\nu_n\ge N\}$ with the remainder terms
of order $O((\ln n)^{-2})$ uniform in $\gamma\in[\gamma_0, \gamma_1]$.
The corresponding estimate for the probability $\mathsf P\{\nu_n=N\}$ refines the previously known results for the case $N=\beta\ln n+o(\ln n)$, where $\beta$ is a positive constant.
@article{DM_2003_15_3_a7,
author = {A. N. Timashev},
title = {On asymptotic expansions for the distribution of the number of cycles in a random permutation},
journal = {Diskretnaya Matematika},
pages = {117--127},
publisher = {mathdoc},
volume = {15},
number = {3},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2003_15_3_a7/}
}
TY - JOUR AU - A. N. Timashev TI - On asymptotic expansions for the distribution of the number of cycles in a random permutation JO - Diskretnaya Matematika PY - 2003 SP - 117 EP - 127 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2003_15_3_a7/ LA - ru ID - DM_2003_15_3_a7 ER -
A. N. Timashev. On asymptotic expansions for the distribution of the number of cycles in a random permutation. Diskretnaya Matematika, Tome 15 (2003) no. 3, pp. 117-127. http://geodesic.mathdoc.fr/item/DM_2003_15_3_a7/