Almost layer-finiteness of the periodic part of a group without involutions
Diskretnaya Matematika, Tome 15 (2003) no. 3, pp. 91-104

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the following theorem which characterises the class of groups without involutions which have an almost layer-finite periodic part: if the normaliser of any non-trivial finite subgroup of a Shunkov group without involutions has an almost layer-finite periodic part, then the group also has an almost layer-finite periodic part.The research was supported by the Russian Foundation for Basic Research, grant 99–01–00432, and by grant №9 of the 6th Competition of Scientific Projects of Young Researchers of Russian Academy of Sciences, 1999.
@article{DM_2003_15_3_a5,
     author = {V. I. Senashov and V. P. Shunkov},
     title = {Almost layer-finiteness of the periodic part of a group without involutions},
     journal = {Diskretnaya Matematika},
     pages = {91--104},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2003_15_3_a5/}
}
TY  - JOUR
AU  - V. I. Senashov
AU  - V. P. Shunkov
TI  - Almost layer-finiteness of the periodic part of a group without involutions
JO  - Diskretnaya Matematika
PY  - 2003
SP  - 91
EP  - 104
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2003_15_3_a5/
LA  - ru
ID  - DM_2003_15_3_a5
ER  - 
%0 Journal Article
%A V. I. Senashov
%A V. P. Shunkov
%T Almost layer-finiteness of the periodic part of a group without involutions
%J Diskretnaya Matematika
%D 2003
%P 91-104
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2003_15_3_a5/
%G ru
%F DM_2003_15_3_a5
V. I. Senashov; V. P. Shunkov. Almost layer-finiteness of the periodic part of a group without involutions. Diskretnaya Matematika, Tome 15 (2003) no. 3, pp. 91-104. http://geodesic.mathdoc.fr/item/DM_2003_15_3_a5/