On the number of invertible homogeneous structures
Diskretnaya Matematika, Tome 15 (2003) no. 2, pp. 123-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

We estimate the number $r(n,m)$ of functions of $n$-valued logic in $m+1$ variables which are local transition functions of reversible homogeneous structures with arbitrary fixed neighbourhood pattern consisting of $m$ vectors. It follows from the results obtained in the paper that if $n\to\infty$, then $$ \ln r(n,m)\sim n^{m+1}\ln n $$ uniformly in $m$. This research was supported by the Russian Foundation for Basic Research, grant 02–01–00162.
@article{DM_2003_15_2_a9,
     author = {I. V. Kucherenko},
     title = {On the number of invertible homogeneous structures},
     journal = {Diskretnaya Matematika},
     pages = {123--127},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2003_15_2_a9/}
}
TY  - JOUR
AU  - I. V. Kucherenko
TI  - On the number of invertible homogeneous structures
JO  - Diskretnaya Matematika
PY  - 2003
SP  - 123
EP  - 127
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2003_15_2_a9/
LA  - ru
ID  - DM_2003_15_2_a9
ER  - 
%0 Journal Article
%A I. V. Kucherenko
%T On the number of invertible homogeneous structures
%J Diskretnaya Matematika
%D 2003
%P 123-127
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2003_15_2_a9/
%G ru
%F DM_2003_15_2_a9
I. V. Kucherenko. On the number of invertible homogeneous structures. Diskretnaya Matematika, Tome 15 (2003) no. 2, pp. 123-127. http://geodesic.mathdoc.fr/item/DM_2003_15_2_a9/

[1] Kudryavtsev V. B., Podkolzin A. S., Bolotov A..A., Osnovy teorii odnorodnykh struktur, Nauka, Moskva, 1990 | MR

[2] Kudryavtsev V. B., Aleshin S. V., Podkolzin A. S., Vvedenie v teoriyu avtomatov, Nauka, Moskva, 1985 | MR