On the activity of cell circuits realising the system of all
Diskretnaya Matematika, Tome 15 (2003) no. 2, pp. 113-122

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the activity of cell circuits, the measure of their complexity, which describes the functioning of such circuits from the energy point of view. For the system $K_n$ of all elementary conjunctions of $n$ variables we find the order of the minimal activity as $n\to\infty$. We prove that it is impossible to reach simultaneously the minimal in order activity and complexity of realising the system $K_n$ in the class of cell circuits.
@article{DM_2003_15_2_a8,
     author = {O. V. Cheremisin},
     title = {On the activity of cell circuits realising the system of all},
     journal = {Diskretnaya Matematika},
     pages = {113--122},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2003_15_2_a8/}
}
TY  - JOUR
AU  - O. V. Cheremisin
TI  - On the activity of cell circuits realising the system of all
JO  - Diskretnaya Matematika
PY  - 2003
SP  - 113
EP  - 122
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2003_15_2_a8/
LA  - ru
ID  - DM_2003_15_2_a8
ER  - 
%0 Journal Article
%A O. V. Cheremisin
%T On the activity of cell circuits realising the system of all
%J Diskretnaya Matematika
%D 2003
%P 113-122
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2003_15_2_a8/
%G ru
%F DM_2003_15_2_a8
O. V. Cheremisin. On the activity of cell circuits realising the system of all. Diskretnaya Matematika, Tome 15 (2003) no. 2, pp. 113-122. http://geodesic.mathdoc.fr/item/DM_2003_15_2_a8/