On generating triples of involutions of large sporadic groups
Diskretnaya Matematika, Tome 15 (2003) no. 2, pp. 103-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

In each finite simple sporadic group, excepting the Baby Monster group $B$, the Monster group $M$, the McLaughlin group $\mathit{McL}$ and Mathieu groups $M_{11}$, $M_{22}$, $M_{23}$, three generating involutions, two of which commute, are found. If $G$ is one of the groups $M_{12}$, $M_{24}$, $\mathit{HS}$, $J_1$, $J_2$, $J_3$, then we give pairs of numbers $p$, $q$, $p\le q$, such that $p=|ik|$, $q=|jk|$ for some involutions $i$, $j$, $k$ with condition $|ij|=2$ generating the group $G$. The triples of involutions mentioned above are found with the use of the system of computer algebra GAP\@. Recall that any two involutions of the triple of involutions generating either $\mathit{McL}$, or $M_{11}$, or $M_{22}$, or $M_{23}$ do not commute. This research was supported by the Russian Foundation for Basic Research, grant 02–01–00078.
@article{DM_2003_15_2_a7,
     author = {A. V. Timofeenko},
     title = {On generating triples of involutions of large sporadic groups},
     journal = {Diskretnaya Matematika},
     pages = {103--112},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2003_15_2_a7/}
}
TY  - JOUR
AU  - A. V. Timofeenko
TI  - On generating triples of involutions of large sporadic groups
JO  - Diskretnaya Matematika
PY  - 2003
SP  - 103
EP  - 112
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2003_15_2_a7/
LA  - ru
ID  - DM_2003_15_2_a7
ER  - 
%0 Journal Article
%A A. V. Timofeenko
%T On generating triples of involutions of large sporadic groups
%J Diskretnaya Matematika
%D 2003
%P 103-112
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2003_15_2_a7/
%G ru
%F DM_2003_15_2_a7
A. V. Timofeenko. On generating triples of involutions of large sporadic groups. Diskretnaya Matematika, Tome 15 (2003) no. 2, pp. 103-112. http://geodesic.mathdoc.fr/item/DM_2003_15_2_a7/

[1] Gorenstein D., Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, Moskva, 1985 | MR | Zbl

[2] Nereshennye voprosy teorii grupp. Kourovskaya tetrad, In-t matematiki SO RAH, Novosibirsk, 2002 | MR

[3] Nuzhin Ya. N., “Porozhdayuschie troiki involyutsii grupp lieva tipa nad konechnym polem nechetnoi kharakteristiki. II”, Algebra i logika, 36:4 (1997), 422–440 | MR | Zbl

[4] Timofeenko A. V., O porozhdayuschikh troikakh nekotorykh sporadicheskikh grupp, Dep. v VINITI 19.03.2001, 693–V2001

[5] Timofeenko A. V., “Porozhdayuschie troiki involyutsii grupp Laionsa i Yanko $J_4$”, Tezisy dokl. Ukrainskogo matem. kongressa, In-t matematiki NAN Ukrainy, Kiev, 2001, 50

[6] Makosii A. I., Timofeenko A. V., “O porozhdayuschikh gruppy Kharady–Nortona i Fishera $\mathit{Fi}_{24}'$ troikakh involyutsii”, Tezisy dokl. 2-go Vsesibirskogo kongressa zhenschin-matematikov, Krasnoyarskii gosuniv., Krasnoyarsk, 2002, 133–134

[7] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, Moskva, 1982 | MR | Zbl

[8] Linton S. A., “The maximal subgroup of the Thompson group”, J. London Math. Soc., 39:1 (1989), 79–88 | DOI | MR | Zbl

[9] Linton S. A., “Corrections to “The maximal subgroup of the Thompson group””, J. London Math. Soc., 43:2 (1991), 253–255 | DOI | MR