On a problem of V.\,G. Sprindzhuk
Diskretnaya Matematika, Tome 15 (2003) no. 2, pp. 63-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider estimates of the function $$ S(t)=\prod_{p\mid t} p $$ equal to the square-free part of the positive integer argument $t$. V. G. Sprindzhuk posed the following problem. Is there a constant $c>0$ such that the inequality $$ S((n+1)\ldots (n+k))^k $$ is fulfilled for an infinite number of pairs of positive integers $n$ and $k$ such that $k\ln^c n$? We prove that there exist positive constants $c_7,\ldots,c_{10}$ such that for $n\geq c_7$ $$ S((n+1)\ldots (n+k))\geq p_1\ldots p_{s(k)},\quad s(k)=k+[c_8k/\ln(2k)] $$ if $1\leq k\leq c_9\sqrt{n/\ln n}$; $$ S((n+1)\ldots (n+k))\ldots p_k $$ if $k\geq c_{10}\sqrt{n/\ln n}$. In the paper, we obtain several other estimates of the function $S(t)$ and discuss some conjectures concerning $S(t)$ and derive corollaries of those conjectures.
@article{DM_2003_15_2_a4,
     author = {N. M. Khodzhaev},
     title = {On a problem of {V.\,G.} {Sprindzhuk}},
     journal = {Diskretnaya Matematika},
     pages = {63--82},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2003_15_2_a4/}
}
TY  - JOUR
AU  - N. M. Khodzhaev
TI  - On a problem of V.\,G. Sprindzhuk
JO  - Diskretnaya Matematika
PY  - 2003
SP  - 63
EP  - 82
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2003_15_2_a4/
LA  - ru
ID  - DM_2003_15_2_a4
ER  - 
%0 Journal Article
%A N. M. Khodzhaev
%T On a problem of V.\,G. Sprindzhuk
%J Diskretnaya Matematika
%D 2003
%P 63-82
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2003_15_2_a4/
%G ru
%F DM_2003_15_2_a4
N. M. Khodzhaev. On a problem of V.\,G. Sprindzhuk. Diskretnaya Matematika, Tome 15 (2003) no. 2, pp. 63-82. http://geodesic.mathdoc.fr/item/DM_2003_15_2_a4/

[1] Erdesh P., “Nekotorye problemy teorii chisel”, Vychisleniya v algebre i teorii chisel, Mir, Moskva, 1976, 202–212

[2] Ramachandra K., “Largest prime factor of the product of $k$ consecutive integers”, Trudy Matem. in-ta im. V. A. Steklova, 132, 1973, 77–81 | MR | Zbl

[3] Turk J., “Prime divisors of polynomials at consecutive integers”, J. reine und angew. Math., 319 (1980), 142–152 | MR | Zbl

[4] Shorey T. N., “On linear form in the logarithms of algebraic numbers”, Acta Arithmetica, 31:1 (1976), 27–41 | MR

[5] Ramachandra K., Shorey T. N., Tijdeman R., “On Grimm's problem relating to factorization of a block of consecutive integers, II”, J. reine und angew. Math., 288 (1976), 199–201 | MR

[6] Erdös P., Turk J., “Products of integers in short intervals”, Acta Arithmetica, 44:2 (1984), 147–174 | MR | Zbl

[7] Sprindzhuk V. G., Klassicheskie diofantovy uravneniya ot dvukh peremennykh, Nauka, Moskva, 1982 | MR | Zbl

[8] Khodzhaev N. M., Zadacha V. G., “Sprindzhuka o beskvadratnoi chasti proizvedeniya posledovatelnykh naturalnykh chisel”, Vestnik MGU, 1997, no. 1, 3–7 | MR | Zbl

[9] Lang S., “Old and new conjectured Diophantine inequalities”, Bulletin Amer. Math. Soc., 23:1 (1990), 35–75 | MR

[10] Shinzel A., Tijdeman R., On the equation $y^m=P(x)$, 31, no. 2, Acta Arithmetica, 1976 | MR

[11] Granville A., “Powerful numbers and Fermat's last theorem”, Math. Rept. Acad. Sci. Can., 8:3 (1986), 215–218 | MR | Zbl

[12] Hall R. R., “Squarefree numbers on short intervals”, Mathematika, 29:1 (1982), 7–17 | MR | Zbl

[13] Sárközy A., “On divisors of binomial coefficients, I”, J. Number Theory, 20:1 (1985), 70–80 | DOI | MR | Zbl

[14] Erdös P., Nicolas J.-L., II Sér., Enseign. Math., 27, 1981 | MR