On two chi-square-type statistics constructed from the frequencies of tuples of states of a multiple Markov chain
Diskretnaya Matematika, Tome 15 (2003) no. 2, pp. 149-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a tuple of states of an $(s-1)$-order Markov chain whose transition probabilities depend on a small part of $s-1$ preceding states. We obtain limit distributions of certain $\chi^2$-statistics $X$ and $Y$ based on frequencies of tuples of states of the Markov chain. For the statistic $X$, frequencies of tuples of only those states are used on which the transition probabilities depend, and for the statistic $Y$, frequencies of $s$-tuples without gaps. The statistical test with statistic $X$ which distinguishes the hypotheses $H_1$ (a high-order Markov chain) and $H_0$ (an independent equiprobable sequence) appears to be more powerful than the test with statistic $Y$. The statistic $Z$ of the Neyman–Pearson test, as well as $X$, depends only on frequencies of tuples with gaps. The statistics $X$ and $Y$ are calculated without use of distribution parameters under the hypothesis $H_1$, and their probabilities of errors of the first and second kinds depend only on the non-centrality parameter, which is a function of transition probabilities. Thus, for these statistics the hypothesis $H_1$ can be considered as composite. This research was supported by the Russian Foundation for Basic Research, grant 00–15–96136.
@article{DM_2003_15_2_a12,
     author = {M. I. Tikhomirova and V. P. Chistyakov},
     title = {On two chi-square-type statistics constructed from the frequencies of tuples of states of a multiple {Markov} chain},
     journal = {Diskretnaya Matematika},
     pages = {149--159},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2003_15_2_a12/}
}
TY  - JOUR
AU  - M. I. Tikhomirova
AU  - V. P. Chistyakov
TI  - On two chi-square-type statistics constructed from the frequencies of tuples of states of a multiple Markov chain
JO  - Diskretnaya Matematika
PY  - 2003
SP  - 149
EP  - 159
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2003_15_2_a12/
LA  - ru
ID  - DM_2003_15_2_a12
ER  - 
%0 Journal Article
%A M. I. Tikhomirova
%A V. P. Chistyakov
%T On two chi-square-type statistics constructed from the frequencies of tuples of states of a multiple Markov chain
%J Diskretnaya Matematika
%D 2003
%P 149-159
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2003_15_2_a12/
%G ru
%F DM_2003_15_2_a12
M. I. Tikhomirova; V. P. Chistyakov. On two chi-square-type statistics constructed from the frequencies of tuples of states of a multiple Markov chain. Diskretnaya Matematika, Tome 15 (2003) no. 2, pp. 149-159. http://geodesic.mathdoc.fr/item/DM_2003_15_2_a12/

[1] Rozanov Yu. A., Sluchainye protsessy, Nauka, Moskva, 1979 | MR | Zbl

[2] Stepanov V. E., “Nekotorye statisticheskie kriterii dlya tsepei Markova”, Teoriya veroyatnostei i ee primeneniya, 2:1 (1957), 143–144 | Zbl

[3] Selivanov B. I., Chistyakov V. P., “Posledovatelnyi $\chi^2$-kriterii, postroennyi po $s$-tsepochkam sostoyanii tsepi Markova”, Diskretnaya matematika, 9:4 (1997), 127–136 | MR | Zbl

[4] Dik I. I., Gunst M. C. M., “The distribution of general guadratic form in normal variables”, Stat. Neerlandica, 39:1 (1985), 14–26 | DOI | MR | Zbl

[5] Chistyakov V. P., “Statistiki khi-kvadrat, postroennye po chastotam nesploshnykh tsepochek iskhodov nezavisimykh ispytanii”, Diskretnaya matematika, 13:4 (2001), 52–59 | MR | Zbl

[6] Tikhomirova M. I., Chistyakov V. P., “Proverka serii i intervalov”, Obozrenie prikladnoi i promyshlennoi matematiki, 2:6 (1995), 980–993