Limit theorems for the number of points of a given set covered by a random linear subspace
Diskretnaya Matematika, Tome 15 (2003) no. 2, pp. 128-137
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $V^T$ be the $T$-dimensional linear space over a finite field $K$, and let $B_1,\ldots,B_m$ be subsets of $V^T$ not containing the zero-point. Let a subspace $L$ be chosen randomly and equiprobably from the set of all $n$-dimensional linear subspaces of $V^T$. We consider the number $\mu(B_i)$ of points
in the intersections $L\cap B_i$, $i=1,\ldots,m$. We study the limit behaviour of the distribution of the vector
$(\mu(B_1),\ldots,\mu(B_m))$ as $T,n\to \infty$ and the sets vary in such a way that the means of $\mu(B_i)$ tend to finite limits. The field $K$ is fixed. We prove that this random vector has in limit the compound Poisson distribution. Necessary and sufficient conditions for asymptotic independency of the random variables
$\mu(B_1),\ldots,\mu(B_m)$ are derived.
This research was supported by the Russian Foundation for Basic Research,
grants 02–01–00266 and 00–15–96136.
@article{DM_2003_15_2_a10,
author = {V. G. Mikhailov},
title = {Limit theorems for the number of points of a given set covered by a random linear subspace},
journal = {Diskretnaya Matematika},
pages = {128--137},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2003_15_2_a10/}
}
TY - JOUR AU - V. G. Mikhailov TI - Limit theorems for the number of points of a given set covered by a random linear subspace JO - Diskretnaya Matematika PY - 2003 SP - 128 EP - 137 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2003_15_2_a10/ LA - ru ID - DM_2003_15_2_a10 ER -
V. G. Mikhailov. Limit theorems for the number of points of a given set covered by a random linear subspace. Diskretnaya Matematika, Tome 15 (2003) no. 2, pp. 128-137. http://geodesic.mathdoc.fr/item/DM_2003_15_2_a10/