Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2003_15_1_a2, author = {L. Ja. Savel'ev and S. V. Balakin and B. V. Khromov}, title = {Covering runs in binary {Markov} sequences}, journal = {Diskretnaya Matematika}, pages = {50--76}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2003_15_1_a2/} }
L. Ja. Savel'ev; S. V. Balakin; B. V. Khromov. Covering runs in binary Markov sequences. Diskretnaya Matematika, Tome 15 (2003) no. 1, pp. 50-76. http://geodesic.mathdoc.fr/item/DM_2003_15_1_a2/
[1] Markov A. A., Ischislenie veroyatnostei, Tipografiya Imperatorskoi Akademii Nauk, Sankt-Peterburg, 1913
[2] Romanovskii V. I., Diskretnye tsepi Markova, Gostekhizdat, Moskva, 1949
[3] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, t. 1, Mir, Moskva, 1984
[4] Savelev L. Ya., “Operatornye uravneniya dlya proizvodyaschikh funktsii”, Dokl. AN SSSR, 343:6 (1995), 740–742 | MR
[5] Savelyev L. Ya., “Runs in finite Markov chains”, Probabilistic Methods in Discrete Mathematics, VSP, Utrecht, 1993, 437–450 | MR
[6] Savelyev L. Ya., “Operator and recursion equations for runs in random sequences”, Probabilistic Methods in Discrete Mathematics, VSP, Utrecht, 1997, 65–86 | MR | Zbl
[7] Savelev L. Ya., “Sluchainye sootvetstviya, dvoichnye matritsy i serii”, Diskretnaya matematika, 11:4 (1999), 3–26 | MR
[8] Kostochka A. V., Mazurov V. D., Savelev L. Ya., “Chislo $q$-ichnykh slov s ogranicheniyami na dlinu maksimalnoi serii”, Diskretnaya matematika, 10:1 (1998), 10–19 | Zbl
[9] Savelev L. Ya., “Maksimum dlin serii v obobschennykh posledovatelnostyakh Bernulli”, Diskretnaya matematika, 11:1 (1999), 29–52 | MR
[10] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, Gostekhizdat, Moskva, 1962
[11] Savelev L. Ya., Markovskie matrichnye operatory, Dep. v VINITI 457-V95, 1995
[12] Fu J. C., Koutras M. V., “Distribution theory of runs: A Markov chain approach”, J. Amer. Statist. Assoc., 89 (1994), 1050–1058 | DOI | MR | Zbl
[13] Koutras M. V., Alexandrou V. A., “Runs, scans and urn model distributions: A unified Markov chain approach”, Ann. Inst. Statist. Math., 47 (1995), 519–529 | DOI | MR
[14] Balakrishnan N., “Joint distributions of numbers of success-runs and failures until the first consecutive $k$ successes in a binary sequence”, Ann. Inst. Statist. Math., 49 (1997), 519–529 | DOI | MR | Zbl
[15] Uchida M., “On number of occurrences of success runs of specified length in a higher-order two-state Markov chain”, Ann. Inst. Statist. Math., 50 (1998), 587–601 | DOI | MR | Zbl
[16] Aki S., Hirano K., “Numbers of success-runs of specified length until certain stopping time rules and generalized binomial distributions of order $k$”, Ann. Inst. Statist. Math., 52 (2000), 767–777 | DOI | MR | Zbl