Nonassociative Galois rings
Diskretnaya Matematika, Tome 14 (2002) no. 4, pp. 117-132

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to introduce the notion of a generalised Galois ring, that is, a Galois ring without associativity assumptions. Some basic properties of associative Galois rings such as cardinality, characteristic, and ideal lattice structure are extended to the nonassociative case. An existence theorem for generalised Galois rings is also proved. However, the uniqueness results known in the associative case are not kept any longer for generalised Galois rings. The research was partially supported by FEDER (IFD–97–0556), by MCYT (PB–PGI99–04), and by FICYT (PB–EXPO1–33)
@article{DM_2002_14_4_a4,
     author = {S. Gonz\'alez and V. T. Markov and K. Martines and A. A. Nechaev and I. F. Rua},
     title = {Nonassociative {Galois} rings},
     journal = {Diskretnaya Matematika},
     pages = {117--132},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2002_14_4_a4/}
}
TY  - JOUR
AU  - S. González
AU  - V. T. Markov
AU  - K. Martines
AU  - A. A. Nechaev
AU  - I. F. Rua
TI  - Nonassociative Galois rings
JO  - Diskretnaya Matematika
PY  - 2002
SP  - 117
EP  - 132
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2002_14_4_a4/
LA  - ru
ID  - DM_2002_14_4_a4
ER  - 
%0 Journal Article
%A S. González
%A V. T. Markov
%A K. Martines
%A A. A. Nechaev
%A I. F. Rua
%T Nonassociative Galois rings
%J Diskretnaya Matematika
%D 2002
%P 117-132
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2002_14_4_a4/
%G ru
%F DM_2002_14_4_a4
S. González; V. T. Markov; K. Martines; A. A. Nechaev; I. F. Rua. Nonassociative Galois rings. Diskretnaya Matematika, Tome 14 (2002) no. 4, pp. 117-132. http://geodesic.mathdoc.fr/item/DM_2002_14_4_a4/