Nonassociative Galois rings
Diskretnaya Matematika, Tome 14 (2002) no. 4, pp. 117-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to introduce the notion of a generalised Galois ring, that is, a Galois ring without associativity assumptions. Some basic properties of associative Galois rings such as cardinality, characteristic, and ideal lattice structure are extended to the nonassociative case. An existence theorem for generalised Galois rings is also proved. However, the uniqueness results known in the associative case are not kept any longer for generalised Galois rings. The research was partially supported by FEDER (IFD–97–0556), by MCYT (PB–PGI99–04), and by FICYT (PB–EXPO1–33)
@article{DM_2002_14_4_a4,
     author = {S. Gonz\'alez and V. T. Markov and K. Martines and A. A. Nechaev and I. F. Rua},
     title = {Nonassociative {Galois} rings},
     journal = {Diskretnaya Matematika},
     pages = {117--132},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2002_14_4_a4/}
}
TY  - JOUR
AU  - S. González
AU  - V. T. Markov
AU  - K. Martines
AU  - A. A. Nechaev
AU  - I. F. Rua
TI  - Nonassociative Galois rings
JO  - Diskretnaya Matematika
PY  - 2002
SP  - 117
EP  - 132
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2002_14_4_a4/
LA  - ru
ID  - DM_2002_14_4_a4
ER  - 
%0 Journal Article
%A S. González
%A V. T. Markov
%A K. Martines
%A A. A. Nechaev
%A I. F. Rua
%T Nonassociative Galois rings
%J Diskretnaya Matematika
%D 2002
%P 117-132
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2002_14_4_a4/
%G ru
%F DM_2002_14_4_a4
S. González; V. T. Markov; K. Martines; A. A. Nechaev; I. F. Rua. Nonassociative Galois rings. Diskretnaya Matematika, Tome 14 (2002) no. 4, pp. 117-132. http://geodesic.mathdoc.fr/item/DM_2002_14_4_a4/

[1] Albert A. A., “On nonassociative division algebras”, Trans. Amer. Math. Soc., 72 (1952), 296–309 | DOI | MR | Zbl

[2] Albert A. A., “Generalized twisted fields”, Pacific J. Math., 11 (1961), 1–8 | MR | Zbl

[3] Cordero M., Wene G. P., “A survey of semifields”, Discrete Math., 208/209 (1999), 125–137 | DOI | MR | Zbl

[4] Dickson L. E., “On commutative linear algebras in which division is always uniquely possible”, Trans. Amer. Math. Soc., 7 (1906), 514–522 | DOI | MR | Zbl

[5] Hungerford T. W., Algebra, Springer, Berlin, 1974 | MR

[6] Janusz G. J., “Separable algebras over commutative rings”, Trans. Amer. Math. Soc., 122 (1996), 461–478 | DOI | MR

[7] Knuth D. E., “Finite semifields and projective planes”, J. Algebra, 2 (1965), 182–217 | DOI | MR | Zbl

[8] Krull W., Algebraische Theorie der Ringe. II, 91 (1924), 1–46 | MR | Zbl

[9] Kuzmin A. S., Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad koltsom Galua”, Algebra i logika, 34:2 (1995), 1–17 | MR

[10] McCrimmon K., “Finite power-associative division rings”, Proc. American Math. Soc., 17 (1966), 1173–1177 | DOI | MR | Zbl

[11] McDonald B. R., Finite rings with identity, Wiley, New York, 1969

[12] Nechaev A. A, “Konechnye koltsa glavnykh idealov”, Matem. sb., 91:3 (1973), 350–366 | Zbl

[13] Nechaev A. A., “Bazis obobschennykh tozhdestv konechnogo kommutativnogo koltsa glavnykh idealov”, Algebra i logika, 18:2 (1979) | MR

[14] Nechaev A. A., “Kod Kerdoka v tsiklicheskoi forme”, Diskretnaya matematika, 1:4 (1989), 123–139 | MR | Zbl

[15] Raghavendran R., “Finite associative rings”, Compos. Math., 21:2 (1969), 195–219 | MR

[16] Schafer R. D., An introduction to nonassociative algebras, Academic Press, New York, 1966 | MR