Nonassociative Galois rings
Diskretnaya Matematika, Tome 14 (2002) no. 4, pp. 117-132
Voir la notice de l'article provenant de la source Math-Net.Ru
The aim of this paper is to introduce the notion of a generalised Galois ring, that is, a Galois ring without
associativity assumptions. Some basic properties of associative Galois rings such as cardinality, characteristic, and ideal lattice structure are extended to the nonassociative case. An existence theorem for generalised Galois rings is also proved. However, the uniqueness results known in the associative case are not kept any longer for generalised Galois rings.
The research was partially supported by FEDER (IFD–97–0556),
by MCYT (PB–PGI99–04), and by FICYT (PB–EXPO1–33)
@article{DM_2002_14_4_a4,
author = {S. Gonz\'alez and V. T. Markov and K. Martines and A. A. Nechaev and I. F. Rua},
title = {Nonassociative {Galois} rings},
journal = {Diskretnaya Matematika},
pages = {117--132},
publisher = {mathdoc},
volume = {14},
number = {4},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2002_14_4_a4/}
}
TY - JOUR AU - S. González AU - V. T. Markov AU - K. Martines AU - A. A. Nechaev AU - I. F. Rua TI - Nonassociative Galois rings JO - Diskretnaya Matematika PY - 2002 SP - 117 EP - 132 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2002_14_4_a4/ LA - ru ID - DM_2002_14_4_a4 ER -
S. González; V. T. Markov; K. Martines; A. A. Nechaev; I. F. Rua. Nonassociative Galois rings. Diskretnaya Matematika, Tome 14 (2002) no. 4, pp. 117-132. http://geodesic.mathdoc.fr/item/DM_2002_14_4_a4/