On $\omega$-languages of special billiards
Diskretnaya Matematika, Tome 14 (2002) no. 3, pp. 95-108

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider non-deterministic initial finite automata without final states and the $\omega$-languages determined by such automata. For such $\omega$-languages, we consider the so-called languages of obstructions. We define and analyse billiard $\omega$-languages determined in a special way for each $n\ge 3$ over an alphabet consisting of $n$ letters. Each $\omega$-word of such $\omega$-language can be obtained with the use of infinite number of reflections of a point from the cushions of billiards having the form of a regular $n$-polygon. For such $\omega$-languages, we consider the languages of obstructions and show that for any $n$ a language of obstructions is not regular. The research was supported by the Russian Foundation for Basic Research, grants 99–01–00907 and 00–15–99253.
@article{DM_2002_14_3_a9,
     author = {B. Melnikov},
     title = {On $\omega$-languages of special billiards},
     journal = {Diskretnaya Matematika},
     pages = {95--108},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2002_14_3_a9/}
}
TY  - JOUR
AU  - B. Melnikov
TI  - On $\omega$-languages of special billiards
JO  - Diskretnaya Matematika
PY  - 2002
SP  - 95
EP  - 108
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2002_14_3_a9/
LA  - ru
ID  - DM_2002_14_3_a9
ER  - 
%0 Journal Article
%A B. Melnikov
%T On $\omega$-languages of special billiards
%J Diskretnaya Matematika
%D 2002
%P 95-108
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2002_14_3_a9/
%G ru
%F DM_2002_14_3_a9
B. Melnikov. On $\omega$-languages of special billiards. Diskretnaya Matematika, Tome 14 (2002) no. 3, pp. 95-108. http://geodesic.mathdoc.fr/item/DM_2002_14_3_a9/