Hyperbolicity of some 2-generator groups with one defining condition
Diskretnaya Matematika, Tome 14 (2002) no. 3, pp. 54-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give the description of word hyperbolic groups of the form $$ \langle a,b,t; t^{-1}at=b, t^{-1}bt=w(a,b)\rangle. $$ The research was supported by the Russian Foundation for Basic Research, grant 00–01–00767.
@article{DM_2002_14_3_a6,
     author = {N. B. Bezverkhnyaya},
     title = {Hyperbolicity of some 2-generator groups with one defining condition},
     journal = {Diskretnaya Matematika},
     pages = {54--69},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2002_14_3_a6/}
}
TY  - JOUR
AU  - N. B. Bezverkhnyaya
TI  - Hyperbolicity of some 2-generator groups with one defining condition
JO  - Diskretnaya Matematika
PY  - 2002
SP  - 54
EP  - 69
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2002_14_3_a6/
LA  - ru
ID  - DM_2002_14_3_a6
ER  - 
%0 Journal Article
%A N. B. Bezverkhnyaya
%T Hyperbolicity of some 2-generator groups with one defining condition
%J Diskretnaya Matematika
%D 2002
%P 54-69
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2002_14_3_a6/
%G ru
%F DM_2002_14_3_a6
N. B. Bezverkhnyaya. Hyperbolicity of some 2-generator groups with one defining condition. Diskretnaya Matematika, Tome 14 (2002) no. 3, pp. 54-69. http://geodesic.mathdoc.fr/item/DM_2002_14_3_a6/

[1] Lysenok I. G., “O nekotorykh algoritmicheskikh svoistvakh giperbolicheskikh grupp”, Izv. AN SSSR, Ser. mat., 53:4 (1989), 814–832 | MR | Zbl

[2] Grigorchuk R. I., Kurchanov P. F., “Nekotorye voprosy teorii grupp, svyazannye s geometriei”, Itogi nauki i tekhn. Sovr. probl. matem. Fund. napr., 58, 1990, 191–256 | MR

[3] Olshanskii A. Yu., “SQ-universalnost giperbolicheskikh grupp”, Matem. sb., 186:8 (1995), 119–132 | MR

[4] Ivanov S. V., Schupp P. E., “On the hyperbolicity of small concellation groups and one-relator groups”, Trans. Amer. Math. Soc., 350:5 (1999), 1851–1894 | DOI | MR

[5] Kapovich I., “Howson property and one-relator groups”, Commun. Algebra, 27:3 (1999), 1057–1072 | DOI | MR | Zbl

[6] Bestvina M., Feighn M., “The combination theorem for negatively curved groups”, J. Diff. Geometry, 35:1 (1992), 85–101 | MR

[7] Bestvina M., Feighn M., “Addendum and correction to: “A combination theorem for negatively curved groups””, J. Diff. Geom., 43:4 (1996), 783–788 | MR | Zbl

[8] Schepeteva N. B., “Giperbolichnost nekotorykh dvuporozhdennykh grupp s odnim opredelyayuschim sootnosheniem”, Vserossiiskaya nauch. konf. “Sovremennye problemy matematiki, mekhaniki i informatiki”, posv. 70-letiyu TulGu. Tezisy dokladov., Tulskii gosuniv., Tula, 2000, 64–65

[9] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, Moskva, 1980 | MR

[10] Bezverkhnii V. N., “Reshenie problem sopryazhennosti slov v odnom klasse grupp”, Algoritmich. problemy teorii grupp i podgrupp, Mezhvuz. sb., Tula, 1997, 4–38

[11] Gersten S. M., Short H., “Rational subgroups of biautomatic groups”, Ann. Math., 134 (1991), 125–158 | DOI | MR | Zbl

[12] Gromov M., “Hyperbolic groups”, Essays in group theory., Springer, Berlin, 1987, 75–263 | MR

[13] Alonso I., Brady T., Cooper D., Ferlini V., Lustig M., Mihalik M., Shapiro M., Short H., Notes on hyperbolic groups. Group theory from a geometric view point, World Scientific, Singapore, 1991, 3–63 | MR | Zbl