@article{DM_2002_14_3_a3,
author = {P. V. Roldugin and A. V. Tarasov},
title = {On the number of bijunctive functions that are invariant under a given permutation},
journal = {Diskretnaya Matematika},
pages = {23--41},
year = {2002},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2002_14_3_a3/}
}
P. V. Roldugin; A. V. Tarasov. On the number of bijunctive functions that are invariant under a given permutation. Diskretnaya Matematika, Tome 14 (2002) no. 3, pp. 23-41. http://geodesic.mathdoc.fr/item/DM_2002_14_3_a3/
[1] Schaefer T., “Complexity of satisfiability problems”, Proc. 10 Annual ACM Symp. on Theory of Computing, 1978, 216–226 | MR
[2] Dantsin E. Ya., “Algoritmika zadachi vypolnimosti”, Voprosy kibern., 131 (1987), 7–21 | MR
[3] Gizunov S. A., Nosov V. A., “O klassifikatsii vsekh bulevykh funktsii 4-kh peremennykh po klassam Sheffera”, Obozrenie prikladnoi i promyshlennoi matematiki, 2:3 (1995), 440–467
[4] Gorshkov S. P., “O slozhnosti zadachi nakhozhdeniya chisla reshenii sistem bulevykh uravnenii”, Diskretnaya matematika, 8:1 (1996), 72–85 | MR
[5] Gorshkov S. P., “Primenenie teorii NP-polnykh zadach dlya otsenki slozhnosti resheniya bulevykh uravnenii”, Obozrenie prikladnoi i promyshlennoi matematiki, 2:3 (1995), 325–398 | MR
[6] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, Moskva, 1997 | MR
[7] Tarasov A. V., “O svoistvakh funktsii, predstavimykh v vide 2-KNF”, Diskretnaya matematika, 13:4 (2001), 99–115 | MR | Zbl