Limit distribution for the number of pairs in a generalized scheme of arrays
Diskretnaya Matematika, Tome 14 (2002) no. 3, pp. 149-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider three combinatorial problems covered by generalised allocation scheme: sampling of balls from an urn that contains balls of various colours; random forests; and random permutations with given number of cycles. For these problems, we present limit distributions of the number of pairs of balls of the same colour; of the number of paths in a forest; and of the number of simple (non-closed) paths in the permutation graph respectively. This research was supported by the Russian Foundation for Basic Research, grant 00–01–00233.
@article{DM_2002_14_3_a14,
     author = {Yu. L. Pavlov and E. V. Cherepanova},
     title = {Limit distribution for the number of pairs in a generalized scheme of arrays},
     journal = {Diskretnaya Matematika},
     pages = {149--159},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2002_14_3_a14/}
}
TY  - JOUR
AU  - Yu. L. Pavlov
AU  - E. V. Cherepanova
TI  - Limit distribution for the number of pairs in a generalized scheme of arrays
JO  - Diskretnaya Matematika
PY  - 2002
SP  - 149
EP  - 159
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2002_14_3_a14/
LA  - ru
ID  - DM_2002_14_3_a14
ER  - 
%0 Journal Article
%A Yu. L. Pavlov
%A E. V. Cherepanova
%T Limit distribution for the number of pairs in a generalized scheme of arrays
%J Diskretnaya Matematika
%D 2002
%P 149-159
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2002_14_3_a14/
%G ru
%F DM_2002_14_3_a14
Yu. L. Pavlov; E. V. Cherepanova. Limit distribution for the number of pairs in a generalized scheme of arrays. Diskretnaya Matematika, Tome 14 (2002) no. 3, pp. 149-159. http://geodesic.mathdoc.fr/item/DM_2002_14_3_a14/

[1] Kolchin V. F., “O raspredelenii odnoi statistiki v polinomialnoi skheme”, Trudy Moskovskogo instituta elektronnogo mashinostroeniya, 32 (1973), 73–91

[2] Agievich S. V., “Ob odnoi kombinatornoi zadache o razmescheniyakh”, Kompyuternyi analiz dannykh i modelirovanie, Sb. nauchnykh statei V mezhdunarodnoi konferentsii, ch. 3, Minsk, 1998, 28–31

[3] Kolchin V. F., Sevastyanov B. A., Chistyakov V. P., Sluchainye razmescheniya, Nauka, Moskva, 1976 | MR | Zbl

[4] Kolchin V. F., Sluchainye otobrazheniya, Nauka, Moskva, 1984 | MR

[5] Kolchin V. F., Sluchainye grafy, Fizmatlit, Moskva, 2000 | MR | Zbl

[6] Pavlov Yu. L., Random forests, VSP, Utrecht, 2000 | MR | Zbl

[7] Pavlov Yu. L., “Asimptoticheskoe raspredelenie maksimalnogo ob'ema dereva v sluchainom lese”, Teoriya veroyatnostei i ee primeneniya, 22:3 (1977), 523–533 | MR | Zbl

[8] Mukhin A. B., “Lokalnye predelnye teoremy dlya reshetchatykh sluchainykh velichin”, Teoriya veroyatnostei i ee primeneniya, 36:4 (1991), 660–674 | MR