A double exponential law for maximal branching processes
Diskretnaya Matematika, Tome 14 (2002) no. 3, pp. 143-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider maximal branching processes defined by the recurrence relation $$ Z_{n+1}=\bigvee_{m=1}^{Z_n}\xi_{m,n}, $$ where $\vee$ stands for the operation of taking maximum, $\xi_{m,n}$, $m\ge 1$, $n\ge 0$, are independent with distribution function $F$ on $\mathbf Z_+$. We prove limit theorems for stationary distributions of the processes $\{Z^{(N)}_n\}$ with the distribution functions $F^{(N)}(x)=F^N(x)$ as $N\to\infty$ in the case where $F$ belongs to the domain of attraction of the double exponential law. This research was supported by the Russian Foundation for Basic Research, grant 00–01–00131.
@article{DM_2002_14_3_a13,
     author = {A. V. Lebedev},
     title = {A double exponential law for maximal branching processes},
     journal = {Diskretnaya Matematika},
     pages = {143--148},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2002_14_3_a13/}
}
TY  - JOUR
AU  - A. V. Lebedev
TI  - A double exponential law for maximal branching processes
JO  - Diskretnaya Matematika
PY  - 2002
SP  - 143
EP  - 148
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2002_14_3_a13/
LA  - ru
ID  - DM_2002_14_3_a13
ER  - 
%0 Journal Article
%A A. V. Lebedev
%T A double exponential law for maximal branching processes
%J Diskretnaya Matematika
%D 2002
%P 143-148
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2002_14_3_a13/
%G ru
%F DM_2002_14_3_a13
A. V. Lebedev. A double exponential law for maximal branching processes. Diskretnaya Matematika, Tome 14 (2002) no. 3, pp. 143-148. http://geodesic.mathdoc.fr/item/DM_2002_14_3_a13/

[1] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, Moskva, 1971 | MR

[2] Vatutin V. A., Zubkov A. M., “Vetvyaschiesya protsessy. I”, Itogi nauki i tekhniki. Teoriya veroyatn. Matem. statistika. Teor. kibernetika, VINITI, Moskva, 1985, 3–67 | MR

[3] Kolchin V. F., “Vetvyaschiesya protsessy i sluchainye giperderevya”, Diskretnaya matematika, 11:1 (1999), 8–23 | MR | Zbl

[4] Sevastyanov B. A., “Minimalnye tochki nadkriticheskogo vetvyaschegosya sluchainogo bluzhdaniya na reshetke $N_0^r$ i mnogotipnye vetvyaschiesya protsessy Galtona–Vatsona”, Diskretnaya matematika, 12:1 (2000), 3–6 | MR | Zbl

[5] Lamperti J., “Maximal branching processes and long-range percolation”, J. Appl. Probab., 7:1 (1970), 89–96 | DOI | MR

[6] Lamperti J., “Remarks on maximal branching processes”, Teoriya veroyatnostei i ee primeneniya, 17:1 (1972), 46–54 | MR | Zbl

[7] Galambosh Ya. I., Asimptoticheskaya teoriya ekstremalnykh poryadkovykh statistik, Nauka, Moskva, 1984 | MR | Zbl

[8] Gnedenko B. V., “Sur la distribution limite du terme maximum d'une série aléatoire”, Ann. Math., 44:3 (1943), 423–453 | DOI | MR | Zbl

[9] Pickands J., “Moment convergence of sample extremes”, Ann. Math. Stat., 39:3 (1968), 881–889 | DOI | MR | Zbl