A family of multivariate chi-square statistics
Diskretnaya Matematika, Tome 14 (2002) no. 3, pp. 130-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a sequence of independent trials, which, under the hypothesis $H_0$, is a realisation of some polynomial scheme. We define a family of multivariate chi-square statistics which includes the sequential chi-square test statistics. We formulate conditions which guarantee that the distributions of the statistics under consideration converge to limit distributions under the hypothesis $H_0$ and the alternatives contigual to $H_0$. We find the form of the Laplace transforms of the limit distributions of the statistics of the family. This research was supported by the Russian Foundation for Basic Research, grant 00–15–96136.
@article{DM_2002_14_3_a12,
     author = {B. I. Selivanov},
     title = {A family of multivariate chi-square statistics},
     journal = {Diskretnaya Matematika},
     pages = {130--142},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2002_14_3_a12/}
}
TY  - JOUR
AU  - B. I. Selivanov
TI  - A family of multivariate chi-square statistics
JO  - Diskretnaya Matematika
PY  - 2002
SP  - 130
EP  - 142
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2002_14_3_a12/
LA  - ru
ID  - DM_2002_14_3_a12
ER  - 
%0 Journal Article
%A B. I. Selivanov
%T A family of multivariate chi-square statistics
%J Diskretnaya Matematika
%D 2002
%P 130-142
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2002_14_3_a12/
%G ru
%F DM_2002_14_3_a12
B. I. Selivanov. A family of multivariate chi-square statistics. Diskretnaya Matematika, Tome 14 (2002) no. 3, pp. 130-142. http://geodesic.mathdoc.fr/item/DM_2002_14_3_a12/

[1] Zakharov V. K., Sarmanov O. V., Sevastyanov B. A., “Posledovatelnyi kriterii $\chi^2$”, Matem. sb., 79:3 (1969), 444–460 | MR | Zbl

[2] Tikhomirova M. I., Chistyakov V. P., “Skolzyaschii khi-kvadrat”, Diskretnaya matematika, 12:4 (2000), 46–52 | MR | Zbl

[3] Jensen D. R., “Limit properties on noncentral multivariate Rayleigh and chi-square distributions”, SIAM J. Appl. Math., 17:4 (1969), 802–814 | DOI | MR | Zbl

[4] Gaek Ya., Shidak Z., Teoriya rangovykh kriteriev, Nauka, Moskva, 1971

[5] Selivanov B. I., “Ob odnom klasse statistik tipa khi-kvadrat”, Obozrenie prikladnoi i promyshlennoi matematiki, 2:6 (1995), 926–966

[6] Gnedenko B. V., “Elementy teorii funktsii raspredeleniya sluchainykh vektorov”, Uspekhi matem. nauk, 10 (1944), 230–244 | MR | Zbl

[7] Barra Zh.-R., Osnovnye ponyatiya matematicheskoi statistiki, Mir, Moskva, 1974 | MR | Zbl

[8] Rao S. R., Lineinye statisticheskie metody, Nauka, Moskva, 1968 | MR | Zbl

[9] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, Moskva, 1974