On the asymptotic properties of the distribution of the number of pairs of $H$-connected chains
Diskretnaya Matematika, Tome 14 (2002) no. 3, pp. 122-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of this paper is a theorem about convergence of the distribution of the number of pairs of $H$-connected $s$-tuples in two independent sequences of independent identically distributed variables. The concept of $H$-connection is a generalisation of the concept of $H$-equivalence of tuples. We give sufficient conditions for convergence and an explicit estimate of the rate of convergence. We use the local variant of the Chen–Stein method for estimating the accuracy of Poisson approximation for distribution of the set of dependent random indicators. The main results of this paper were announced in [7]. The research was supported by the Russian Foundation for Basic Research, grants 02–01–00266 and 00–15–96136.
@article{DM_2002_14_3_a11,
     author = {V. G. Mikhailov},
     title = {On the asymptotic properties of the distribution of the number of pairs of $H$-connected chains},
     journal = {Diskretnaya Matematika},
     pages = {122--129},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2002_14_3_a11/}
}
TY  - JOUR
AU  - V. G. Mikhailov
TI  - On the asymptotic properties of the distribution of the number of pairs of $H$-connected chains
JO  - Diskretnaya Matematika
PY  - 2002
SP  - 122
EP  - 129
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2002_14_3_a11/
LA  - ru
ID  - DM_2002_14_3_a11
ER  - 
%0 Journal Article
%A V. G. Mikhailov
%T On the asymptotic properties of the distribution of the number of pairs of $H$-connected chains
%J Diskretnaya Matematika
%D 2002
%P 122-129
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2002_14_3_a11/
%G ru
%F DM_2002_14_3_a11
V. G. Mikhailov. On the asymptotic properties of the distribution of the number of pairs of $H$-connected chains. Diskretnaya Matematika, Tome 14 (2002) no. 3, pp. 122-129. http://geodesic.mathdoc.fr/item/DM_2002_14_3_a11/

[1] Buravlev S. M., “Povtoreniya s tochnostyu do perestanovok v posledovatelnosti nezavisimykh ispytanii”, Diskretnaya matematika, 11:1 (1999), 53–75 | MR | Zbl

[2] Buravlev S. M., “Predelnye teoremy dlya sluchainykh velichin ot chisla par otrezkov, svyazannykh podstanovkami iz latinskogo pryamougolnika”, Tezisy dokl. Tretei Vserossiiskoi shkoly-kollokvium po stokhasticheskim metodam, TVP, Moskva, 1996, 37–40

[3] Buravlev S. M., “Lokalnaya asimptoticheskaya normalnost chisla par otrezkov posledovatelnosti, svyazannykh podstanovkami iz latinskogo pryamougolnika”, Obozrenie prikladnoi i promyshlennoi matematiki, 5:2 (1998), s205–207

[4] Buravlev S. M., “Utochnenie odnogo predelnogo raspredeleniya”, Obozrenie prikladnoi i promyshlennoi matematiki, 6:1 (1999), 127–128 | MR

[5] Shoitov A. M., “Predelnye raspredeleniya chisla naborov $H$-ekvivalentnykh otrezkov v posledovatelnosti nezavisimykh ispytanii”, Obozrenie prikladnoi i promyshlennoi matematiki, 6:1 (1999), 218–220

[6] Shoitov A. M., “Svyaz otrezkov otnosheniem $H$-ekvivalentnosti v skheme serii”, Obozrenie prikladnoi i promyshlennoi matematiki, 6:1 (1999), 220–221

[7] Mikhailov V. G., “Predelnaya teorema Puassona dlya chisla $H$-sovpadenii tsepochek”, Obozrenie prikladnoi i promyshlennoi matematiki, 7:1 (2000), 123–124

[8] Zubkov A. M., Mikhailov V. G., “Predelnye raspredeleniya sluchainykh velichin svyazannykh s dlinnymi povtoreniyami v posledovatelnosti nezavisimykh ispytanii”, Teoriya veroyatnostei i ee primeneniya, 19:1 (1974), 173–181 | MR | Zbl

[9] Zubkov A. M., Mikhailov V. G., “O povtoreniyakh $s$-tsepochek v posledovatelnosti nezavisimykh velichin”, Teoriya veroyatnostei i ee primeneniya, 24:2 (1979), 267–279 | MR | Zbl

[10] Mikhailov V. G., “Otsenka tochnosti slozhnoi puassonovskoi approksimatsii dlya raspredeleniya chisla sovpadayuschikh tsepochek”, Teoriya veroyatnostei i ee primeneniya, 46:4 (2001), 713–723

[11] Barbour A. D., Holst L., Janson S., Poisson approximation, Oxford University Press, Oxford, 1992 | MR | Zbl