Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2002_14_3_a10, author = {A. F. Gainutdinova}, title = {On the relative complexity of quantum and classical branching programs}, journal = {Diskretnaya Matematika}, pages = {109--121}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2002_14_3_a10/} }
A. F. Gainutdinova. On the relative complexity of quantum and classical branching programs. Diskretnaya Matematika, Tome 14 (2002) no. 3, pp. 109-121. http://geodesic.mathdoc.fr/item/DM_2002_14_3_a10/
[1] Barrington D., “Vetvyaschiesya programmy ogranichennoi shiriny, imeyuschie polinomialnuyu slozhnost, raspoznayut v tochnosti yazyki iz $NC^1$”, Kibern. sb., 28 (1991), 94–113
[2] Valiev V. A., Kokin A. A., Kvantovye kompyutery: nadezhdy i realnost, NIS, Izhevsk, 2001
[3] Kemeni D., Snell D., Konechnye tsepi Markova, Nauka, Moskva, 1970
[4] Kitaev A., Shen A., Vyalyi M., Klassicheskie i kvantovye vychisleniya, MTsNMO, Moskva, 1999
[5] Manin Yu. I., Vychislimoe i nevychislimoe, Sov. radio, Moskva, 1980 | MR
[6] Okolnishnikova E. A., “Nizhnie otsenki slozhnosti realizatsii kharakteristicheskikh funktsii dvoichnykh kodov binarnymi programmami”, Metody diskretnogo analiza v sinteze realizatsii bulevykh funktsii, 51 (1991), 61–83 | MR
[7] Ablayev F., Gainutdinova A., Karpinski M., “On computational power of quantum branching programs”, Lect. Notes Computer Sci., 2138, 2001, 59–70 | MR | Zbl
[8] Ablayev F., Karpinski M., “On the power of randomized branching programs”, Lect. Notes Computer Sci., 1099, 1996, 348–356 | MR | Zbl
[9] Ambainis A., Freivalds R., “1-way quantum finite automata: strengths, weaknesses and generalization”, 39th Annual Symp. Found. Computer Sci., 1998, 332–342
[10] Borodin A., Fischer M., Kirkpatrick D., Lynch N., Tompa M., “A time-space tradeoff for sorting on non-oblivious machines”, Proc. 20th Annual Symp. Found. Computer Sci., 1979, 319–327
[11] Brodsky A., Pippenger N., Characterization of 1-way quantum finite automata, http://www.lanl.gov/archive/quant-ph/9903014
[12] Feynman R., Intern. J. Theoretical Physics, 21, 1982
[13] Grover L., “A fast quantum mechanical algorithm for database search”, Proc. 28th STOC, 1996, 212–219 | MR | Zbl
[14] Gruska J., Quantum computing, McGraw–Hill, New York, 1999 | MR
[15] Kondacs A., Watrous J., “On the power of quantum finite state automata”, Proc. 38th Annual Symp. Found. Computer Sci., 1997, 66–75
[16] Moore C., Nilson M., Some notes on parallel quantum computing
[17] Nakanishi M., Hamaguchi K., Kashiwabara T., “Ordered quantum branching programs are more powerful than ordered probabilistic branching programs under a bounded-width restriction” (Proc. 6th Annual Intern. Conf. Computing and Combinatorics, COCOON'2000), Lect. Notes Computer Sci., 1858, 2000, 467–476 | MR | Zbl
[18] Shor P., “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer”, SIAM J. Comput., 26 (1997), 1484–1509 | DOI | MR | Zbl
[19] Wegener I., Branching programs and binary decision diagrams. Theory and applications, SIAM, Philadelphia, 2000 | MR
[20] Yao A., “Quantum circuit complexity”, Proc. 34th Annual Symp. Found. Computer Sci., 1993, 352–361 | MR