On the relative complexity of quantum and classical branching programs
Diskretnaya Matematika, Tome 14 (2002) no. 3, pp. 109-121
Voir la notice de l'article provenant de la source Math-Net.Ru
We give a definition of a quantum branching program. A well-known Boolean function
$\operatorname{MOD}_p$ is considered. We prove that any deterministic branching program and
any probabilistic ordered stable branching program which $(1/2+\varepsilon)$-compute the function
$\operatorname{MOD}_p$ are of width no less than $p$. We construct a stable quantum branching program of width $O(\log p)$ which computes the function $\operatorname{MOD}_p$ with one-sided error $\varepsilon>0$.
@article{DM_2002_14_3_a10,
author = {A. F. Gainutdinova},
title = {On the relative complexity of quantum and classical branching programs},
journal = {Diskretnaya Matematika},
pages = {109--121},
publisher = {mathdoc},
volume = {14},
number = {3},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2002_14_3_a10/}
}
A. F. Gainutdinova. On the relative complexity of quantum and classical branching programs. Diskretnaya Matematika, Tome 14 (2002) no. 3, pp. 109-121. http://geodesic.mathdoc.fr/item/DM_2002_14_3_a10/