On the number of sum-free sets in an interval of natural numbers
Diskretnaya Matematika, Tome 14 (2002) no. 3, pp. 3-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

A set $A$ of integers is called sum-free if $a+b\notin A$ for any $a,b\in A$. For an arbitrary $\varepsilon>0$, let $s_{\varepsilon}(n)$ denote the number of sum-free sets in the segment $[(1/4+\varepsilon)n,n]$. We prove that for any $\varepsilon>0$ there exists a constant $c =c(\varepsilon)$ such that $$ s_{\varepsilon}(n)\le c2^{n/2}. $$ This research was supported by the Russian Foundation for Basic Research, grant 01–01–00266.
@article{DM_2002_14_3_a0,
     author = {K. G. Omel'yanov and A. A. Sapozhenko},
     title = {On the number of sum-free sets in an interval of natural numbers},
     journal = {Diskretnaya Matematika},
     pages = {3--7},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2002_14_3_a0/}
}
TY  - JOUR
AU  - K. G. Omel'yanov
AU  - A. A. Sapozhenko
TI  - On the number of sum-free sets in an interval of natural numbers
JO  - Diskretnaya Matematika
PY  - 2002
SP  - 3
EP  - 7
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2002_14_3_a0/
LA  - ru
ID  - DM_2002_14_3_a0
ER  - 
%0 Journal Article
%A K. G. Omel'yanov
%A A. A. Sapozhenko
%T On the number of sum-free sets in an interval of natural numbers
%J Diskretnaya Matematika
%D 2002
%P 3-7
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2002_14_3_a0/
%G ru
%F DM_2002_14_3_a0
K. G. Omel'yanov; A. A. Sapozhenko. On the number of sum-free sets in an interval of natural numbers. Diskretnaya Matematika, Tome 14 (2002) no. 3, pp. 3-7. http://geodesic.mathdoc.fr/item/DM_2002_14_3_a0/

[1] Cameron P., Erdős P., “On the number of integers with various properties”, Number theory, Proc. 1st Conf. Can. Number Theory Assoc. Banff/Alberta (Mollin R. A., Ed.) 1988, De Gruyter, Berlin, 1990, 61–79

[2] Calkin N. J., “On the number of sum-free sets”, Bull. London Math. Soc., 22 (1990), 141–144 | DOI | MR | Zbl

[3] Mann H. B., Addition theorems: the addition theorems of group theory and number theory, Interscience, New York, 1965 | MR | Zbl

[4] Sapozhenko A. A., “O chisle nezavisimykh mnozhestv v rasshiritelyakh”, Diskretnaya matematika, 13:1 (2001), 56–62 | MR | Zbl