Some properties of the inertia groups of Boolean bijunctive functions, and an injunctive method for the generation of such functions
Diskretnaya Matematika, Tome 14 (2002) no. 2, pp. 33-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of bijunctive Boolean functions consists of the functions representable by the 2-CNF\@. The problem of enumeration of such function of arbitrary number of variables has not been solved. In the paper, we consider properties of inertia groups of bijunctive functions in several groups and give an inductive method of generating all distinct representatives of the classes of geometric equivalence of bijunctive functions. By this method we calculate the numbers of bijunctive functions of 5, 6, and 7 variables.
@article{DM_2002_14_2_a3,
     author = {A. V. Tarasov},
     title = {Some properties of the inertia groups of {Boolean} bijunctive functions, and an injunctive method for the generation of such functions},
     journal = {Diskretnaya Matematika},
     pages = {33--47},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2002_14_2_a3/}
}
TY  - JOUR
AU  - A. V. Tarasov
TI  - Some properties of the inertia groups of Boolean bijunctive functions, and an injunctive method for the generation of such functions
JO  - Diskretnaya Matematika
PY  - 2002
SP  - 33
EP  - 47
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2002_14_2_a3/
LA  - ru
ID  - DM_2002_14_2_a3
ER  - 
%0 Journal Article
%A A. V. Tarasov
%T Some properties of the inertia groups of Boolean bijunctive functions, and an injunctive method for the generation of such functions
%J Diskretnaya Matematika
%D 2002
%P 33-47
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2002_14_2_a3/
%G ru
%F DM_2002_14_2_a3
A. V. Tarasov. Some properties of the inertia groups of Boolean bijunctive functions, and an injunctive method for the generation of such functions. Diskretnaya Matematika, Tome 14 (2002) no. 2, pp. 33-47. http://geodesic.mathdoc.fr/item/DM_2002_14_2_a3/

[1] Schaefer T., “Complexity of satisfiability problems”, Proc. 10 Annual ACM Symposium on Theory of Computing, 1978, 216–226 | MR

[2] Dantsin E. Ya., “Algoritmika zadachi vypolnimosti”, Voprosy kibern., 131 (1987), 7–21 | MR

[3] Tarasov A. V., “O svoistvakh funktsii, predstavimykh v vide 2-KNF”, Diskretnaya matematika, 13:4 (2001), 99–115 | MR | Zbl

[4] Gorshkov S. P., “O peresechenii klassov multiafinnykh, biyunktivnykh slabo polozhitelnykh i slabo otritsatelnykh bulevykh funktsii”, Obozrenie prikladnoi i promyshlennoi matematiki, 4:2 (1997), 238–259

[5] Gizunov S. A., Nosov V. A., “O klassifikatsii vsekh bulevykh funktsii ot 4-kh peremennykh po klassam Shefera”, Obozrenie prikladnoi i promyshlennoi matematiki, 2:3 (1995), 440–467

[6] Akho A., Khopkroft Dzh., Ulman Dzh., Postroenie i analiz vychislitelnykh algoritmov, Mir, Moskva, 1979 | MR | Zbl

[7] Zemlyachenko V. N., Kornienko N. M., Tyshkevich R. I., “Problema izomorfizma grafov”, Zapiski nauch. seminarov LOMI AN SSSR, 118, 1982, 83–158 | MR | Zbl