Transitive polynomial transformations of residue class rings
Diskretnaya Matematika, Tome 14 (2002) no. 2, pp. 20-32
Voir la notice de l'article provenant de la source Math-Net.Ru
We give a complete description of the polynomials $f(x)$ with integer coefficients such that the period of the recurring sequence $u_{i+1}\equiv f(u_i)\pmod m$ is equal to $m$.
@article{DM_2002_14_2_a2,
author = {M. V. Larin},
title = {Transitive polynomial transformations of residue class rings},
journal = {Diskretnaya Matematika},
pages = {20--32},
publisher = {mathdoc},
volume = {14},
number = {2},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2002_14_2_a2/}
}
M. V. Larin. Transitive polynomial transformations of residue class rings. Diskretnaya Matematika, Tome 14 (2002) no. 2, pp. 20-32. http://geodesic.mathdoc.fr/item/DM_2002_14_2_a2/