Limit distributions of the number of sets of $H$-equivalent segments in an equiprobable polynomial scheme of arrays
Diskretnaya Matematika, Tome 14 (2002) no. 1, pp. 82-98
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study random variables which characterise collections of segments in an equiprobable polynomial scheme related by the $H$-equivalence. We give an upper bound for the variation distance between
the distribution of the random variable $\xi_k(H)$ equal to the number of collections of $H$-equivalent segments
and the Poisson distribution. We present sufficient conditions for the convergence of the distribution functions of the number of $H$-equivalent segments in the triangular array scheme of equiprobable polynomial trials to
the normal law, the Poisson law, and the compound Poisson law.
@article{DM_2002_14_1_a6,
author = {A. M. Shoitov},
title = {Limit distributions of the number of sets of $H$-equivalent segments in an equiprobable polynomial scheme of arrays},
journal = {Diskretnaya Matematika},
pages = {82--98},
publisher = {mathdoc},
volume = {14},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2002_14_1_a6/}
}
TY - JOUR AU - A. M. Shoitov TI - Limit distributions of the number of sets of $H$-equivalent segments in an equiprobable polynomial scheme of arrays JO - Diskretnaya Matematika PY - 2002 SP - 82 EP - 98 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2002_14_1_a6/ LA - ru ID - DM_2002_14_1_a6 ER -
A. M. Shoitov. Limit distributions of the number of sets of $H$-equivalent segments in an equiprobable polynomial scheme of arrays. Diskretnaya Matematika, Tome 14 (2002) no. 1, pp. 82-98. http://geodesic.mathdoc.fr/item/DM_2002_14_1_a6/