On the asymptotics of the probabilities of large deviations for a negative polynomial distribution
Diskretnaya Matematika, Tome 14 (2002) no. 1, pp. 75-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the polynomial scheme of trials with outcomes $E_0,E_1,\dots,E_N$ and the corresponding probabilities $p_0,p_1,\dots,p_N$. We assume that the trials are performed until the $r$th occurrence of the outcome $E_0$, $r=1,2,\dotsc$ If $\eta_j(r)$ is the number of occurrences of the outcome $E_j$ at the stopping time, $j=1,\dots,N$, and $\eta(r)=(\eta_1(r),\dots,\eta_N(r))$, then the vector $\eta(r)$ has the negative polynomial distribution. Under the assumptions that $N\in\mathbf N$ and the positive probabilities $p_0,p_1,\dots,p_N$ are fixed, that $r\to\infty$ and $k_1,\dots,k_N\to\infty$ so that the parameters $\beta_j=k_j/r$ satisfy the inequalities $\beta_j\ge\varepsilon$, where $\varepsilon$ is a positive constant, $j=1,\dots,N$, and under some additional constraints, we give asymptotic estimates of the probabilities of large deviations $$ \mathsf P\{\eta_j(r)\le k_j,\ j=1,\dots,N\}, \qquad \mathsf P\{\eta_j(r)\ge k_j,\ j=1,\dots, N\}. $$ In order to derive these asymptotic estimates, we use the multidimensional saddle-point method in the form suggested by Good.
@article{DM_2002_14_1_a5,
     author = {A. N. Timashev},
     title = {On the asymptotics of the probabilities of large deviations for a negative polynomial distribution},
     journal = {Diskretnaya Matematika},
     pages = {75--81},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2002_14_1_a5/}
}
TY  - JOUR
AU  - A. N. Timashev
TI  - On the asymptotics of the probabilities of large deviations for a negative polynomial distribution
JO  - Diskretnaya Matematika
PY  - 2002
SP  - 75
EP  - 81
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2002_14_1_a5/
LA  - ru
ID  - DM_2002_14_1_a5
ER  - 
%0 Journal Article
%A A. N. Timashev
%T On the asymptotics of the probabilities of large deviations for a negative polynomial distribution
%J Diskretnaya Matematika
%D 2002
%P 75-81
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2002_14_1_a5/
%G ru
%F DM_2002_14_1_a5
A. N. Timashev. On the asymptotics of the probabilities of large deviations for a negative polynomial distribution. Diskretnaya Matematika, Tome 14 (2002) no. 1, pp. 75-81. http://geodesic.mathdoc.fr/item/DM_2002_14_1_a5/

[1] Ivchenko G. I., Morozova N. M., “Otritsatelnoe polinomialnoe raspredelenie”, Diskretnaya matematika, 5:2 (1993), 138–149 | MR | Zbl

[2] Egorychev G. P., Integralnoe predstavlenie i vychislenie kombinatornykh summ, Nauka, Novosibirsk, 1977 | MR | Zbl

[3] Timashev A. N., “Teoremy o bolshikh ukloneniyakh v polinomialnoi skheme ispytanii”, Diskretnaya matematika, 5:2 (1993), 83–89 | MR | Zbl