On the asymptotics of the probabilities of large deviations for a negative polynomial distribution
Diskretnaya Matematika, Tome 14 (2002) no. 1, pp. 75-81
We consider the polynomial scheme of trials with outcomes $E_0,E_1,\dots,E_N$ and the corresponding probabilities $p_0,p_1,\dots,p_N$. We assume that the trials are performed until the $r$th occurrence of the outcome $E_0$, $r=1,2,\dotsc$ If $\eta_j(r)$ is the number of occurrences of the outcome $E_j$ at the stopping time, $j=1,\dots,N$, and $\eta(r)=(\eta_1(r),\dots,\eta_N(r))$, then the vector $\eta(r)$ has the negative polynomial distribution. Under the assumptions that $N\in\mathbf N$ and the positive probabilities $p_0,p_1,\dots,p_N$ are fixed, that $r\to\infty$ and $k_1,\dots,k_N\to\infty$ so that the parameters $\beta_j=k_j/r$ satisfy the inequalities $\beta_j\ge\varepsilon$, where $\varepsilon$ is a positive constant, $j=1,\dots,N$, and under some additional constraints, we give asymptotic estimates of the probabilities of large deviations $$ \mathsf P\{\eta_j(r)\le k_j,\ j=1,\dots,N\}, \qquad \mathsf P\{\eta_j(r)\ge k_j,\ j=1,\dots, N\}. $$ In order to derive these asymptotic estimates, we use the multidimensional saddle-point method in the form suggested by Good.
@article{DM_2002_14_1_a5,
author = {A. N. Timashev},
title = {On the asymptotics of the probabilities of large deviations for a negative polynomial distribution},
journal = {Diskretnaya Matematika},
pages = {75--81},
year = {2002},
volume = {14},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2002_14_1_a5/}
}
A. N. Timashev. On the asymptotics of the probabilities of large deviations for a negative polynomial distribution. Diskretnaya Matematika, Tome 14 (2002) no. 1, pp. 75-81. http://geodesic.mathdoc.fr/item/DM_2002_14_1_a5/
[1] Ivchenko G. I., Morozova N. M., “Otritsatelnoe polinomialnoe raspredelenie”, Diskretnaya matematika, 5:2 (1993), 138–149 | MR | Zbl
[2] Egorychev G. P., Integralnoe predstavlenie i vychislenie kombinatornykh summ, Nauka, Novosibirsk, 1977 | MR | Zbl
[3] Timashev A. N., “Teoremy o bolshikh ukloneniyakh v polinomialnoi skheme ispytanii”, Diskretnaya matematika, 5:2 (1993), 83–89 | MR | Zbl