Unitary polylinear shift registers and their periods
Diskretnaya Matematika, Tome 14 (2002) no. 1, pp. 30-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article, a concept of a $k$-linear shift register ($k$-LSR) over a module ${}_RM$, where $R$ is an Artinian commutative ring, is studied. Such register is determined by a monic ideal $I\triangleleft R[x_1,\ldots,x_k]$ and a Ferrer diagram $\mathcal F\subset\mathbf N_0^k$. A class of ideals $I$ determining a $k$-LSR on some Ferrer diagram is described. In particular, a class of ideals $I$ determining a $k$-LSR on a fixed Ferrer diagram is constructed. A lower estimate for the periods of the constructed $k$-LSRs is obtained. It is shown that this estimate is attainable in some cases.
@article{DM_2002_14_1_a3,
     author = {D. A. Mikhailov},
     title = {Unitary polylinear shift registers and their periods},
     journal = {Diskretnaya Matematika},
     pages = {30--59},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2002_14_1_a3/}
}
TY  - JOUR
AU  - D. A. Mikhailov
TI  - Unitary polylinear shift registers and their periods
JO  - Diskretnaya Matematika
PY  - 2002
SP  - 30
EP  - 59
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2002_14_1_a3/
LA  - ru
ID  - DM_2002_14_1_a3
ER  - 
%0 Journal Article
%A D. A. Mikhailov
%T Unitary polylinear shift registers and their periods
%J Diskretnaya Matematika
%D 2002
%P 30-59
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2002_14_1_a3/
%G ru
%F DM_2002_14_1_a3
D. A. Mikhailov. Unitary polylinear shift registers and their periods. Diskretnaya Matematika, Tome 14 (2002) no. 1, pp. 30-59. http://geodesic.mathdoc.fr/item/DM_2002_14_1_a3/

[1] Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Mir, Moskva, 1972 | MR

[2] Bukhberger B., Kollinz Dzh., Loos R., Kompyuternaya algebra, Mir, Moskva, 1986 | MR

[3] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, Ch. II, Moskva, 1991

[4] Koks D., Litl Dzh., O'Shi D., Idealy, mnogoobraziya i algoritmy, Mir, Moskva, 2000

[5] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, 1, 1997, 139–202 | MR

[6] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Strukturnye, analiticheskie i statisticheskie svoistva lineinykh i polilineinykh rekurrent”, Trudy po diskretnoi matematike, 3, 2000, 155–194

[7] Lidl R., Niderraiter G., Konechnye polya, t. 1, 2, Mir, Moskva, 1988 | Zbl

[8] Nechaev A. A., “Konechnye kvazifrobeniusovy moduli, prilozheniya k kodam i lineinym rekurrentam”, Fundamentalnaya i prikladnaya matematika, 1:1 (1995), 229–254 | MR | Zbl

[9] Adams W., Loustaunau P., An introduction to Gröbner bases, Amer. Math. Soc., Providence, 1994 | MR

[10] Becker T., Weispfenning V., Gröbner bases: a computational approach to commutative algebra, Springer, Berlin, 1993 | MR

[11] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl

[12] Kurakin V. L., Mikhalev A. V., Nechaev A. A., “Polylinear recurring sequences over a bimodule”, Proc. 12 Int. Conf. on Formal Power Series Alg. Comb., 2000 | MR

[13] Mikhailov D. A., “Polylinear shift registers and standard bases”, Proc. 12 Int. Conf. on Formal Power Series Alg. Comb., 2000 | MR

[14] Sakata S., “Synthesis of two-dimensional linear feedback shift-registers and Gröbner bases”, Lect. Notes Comput. Sci., 356, 1989, 394–407 | MR | Zbl

[15] Sakata S., “A Gröbner basis and a minimal polynomial set of a finite $nD$ array”, Lect. Notes Comput. Sci., 508, 1991, 280–291 | MR | Zbl