Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2002_14_1_a3, author = {D. A. Mikhailov}, title = {Unitary polylinear shift registers and their periods}, journal = {Diskretnaya Matematika}, pages = {30--59}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2002_14_1_a3/} }
D. A. Mikhailov. Unitary polylinear shift registers and their periods. Diskretnaya Matematika, Tome 14 (2002) no. 1, pp. 30-59. http://geodesic.mathdoc.fr/item/DM_2002_14_1_a3/
[1] Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Mir, Moskva, 1972 | MR
[2] Bukhberger B., Kollinz Dzh., Loos R., Kompyuternaya algebra, Mir, Moskva, 1986 | MR
[3] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, Ch. II, Moskva, 1991
[4] Koks D., Litl Dzh., O'Shi D., Idealy, mnogoobraziya i algoritmy, Mir, Moskva, 2000
[5] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, 1, 1997, 139–202 | MR
[6] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Strukturnye, analiticheskie i statisticheskie svoistva lineinykh i polilineinykh rekurrent”, Trudy po diskretnoi matematike, 3, 2000, 155–194
[7] Lidl R., Niderraiter G., Konechnye polya, t. 1, 2, Mir, Moskva, 1988 | Zbl
[8] Nechaev A. A., “Konechnye kvazifrobeniusovy moduli, prilozheniya k kodam i lineinym rekurrentam”, Fundamentalnaya i prikladnaya matematika, 1:1 (1995), 229–254 | MR | Zbl
[9] Adams W., Loustaunau P., An introduction to Gröbner bases, Amer. Math. Soc., Providence, 1994 | MR
[10] Becker T., Weispfenning V., Gröbner bases: a computational approach to commutative algebra, Springer, Berlin, 1993 | MR
[11] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl
[12] Kurakin V. L., Mikhalev A. V., Nechaev A. A., “Polylinear recurring sequences over a bimodule”, Proc. 12 Int. Conf. on Formal Power Series Alg. Comb., 2000 | MR
[13] Mikhailov D. A., “Polylinear shift registers and standard bases”, Proc. 12 Int. Conf. on Formal Power Series Alg. Comb., 2000 | MR
[14] Sakata S., “Synthesis of two-dimensional linear feedback shift-registers and Gröbner bases”, Lect. Notes Comput. Sci., 356, 1989, 394–407 | MR | Zbl
[15] Sakata S., “A Gröbner basis and a minimal polynomial set of a finite $nD$ array”, Lect. Notes Comput. Sci., 508, 1991, 280–291 | MR | Zbl