A noninterference model and hidden channels
Diskretnaya Matematika, Tome 14 (2002) no. 1, pp. 11-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider mathematical models of secure systems, namely, the traditional non-interference model and a probabilistic non-interference model. We demonstrate that a system can satisfy the conditions of the traditional non-interference model in presence of a subliminal channel from the high-security domain to the low-security one. We give a sufficient condition for absence of a system of subliminal channels in the automaton model.This research was supported by the Russian Foundation for Basic Research, grant 01–01–00895.
@article{DM_2002_14_1_a1,
     author = {A. A. Grusho and E. L. Shumitskaya},
     title = {A noninterference model and hidden channels},
     journal = {Diskretnaya Matematika},
     pages = {11--16},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2002_14_1_a1/}
}
TY  - JOUR
AU  - A. A. Grusho
AU  - E. L. Shumitskaya
TI  - A noninterference model and hidden channels
JO  - Diskretnaya Matematika
PY  - 2002
SP  - 11
EP  - 16
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2002_14_1_a1/
LA  - ru
ID  - DM_2002_14_1_a1
ER  - 
%0 Journal Article
%A A. A. Grusho
%A E. L. Shumitskaya
%T A noninterference model and hidden channels
%J Diskretnaya Matematika
%D 2002
%P 11-16
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2002_14_1_a1/
%G ru
%F DM_2002_14_1_a1
A. A. Grusho; E. L. Shumitskaya. A noninterference model and hidden channels. Diskretnaya Matematika, Tome 14 (2002) no. 1, pp. 11-16. http://geodesic.mathdoc.fr/item/DM_2002_14_1_a1/

[1] Moskowitz I. S., Costich O. L., “A classical automata approach to noninterference type problems”, Proc. Computer Security Foundations Workshop V, IEEE Press, 1992, 2–8