Multicriteria combinatorial linear problems: parametrisation of the optimality principle and the stability of the effective solutions
Diskretnaya Matematika, Tome 13 (2001) no. 4, pp. 43-51

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a new approach to the investigation of the stability of the effective solutions of an $n$-criteria linear trajectory (on a system of subsets of a finite set) problem, where the optimality principle is determined by an integer parameter $s$ varying from 1 to $n-1$. The extreme values of the parameter correspond to the majority and Pareto optimality principles. For each value of the parameter $s$, the boundary for variation of the parameters of the partial criteria are given under which the effectiveness of trajectories is preserved.
@article{DM_2001_13_4_a1,
     author = {V. A. Emelichev and Yu. v. Stepanishina},
     title = {Multicriteria combinatorial linear problems: parametrisation of the optimality principle and the stability of the effective solutions},
     journal = {Diskretnaya Matematika},
     pages = {43--51},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2001_13_4_a1/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - Yu. v. Stepanishina
TI  - Multicriteria combinatorial linear problems: parametrisation of the optimality principle and the stability of the effective solutions
JO  - Diskretnaya Matematika
PY  - 2001
SP  - 43
EP  - 51
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2001_13_4_a1/
LA  - ru
ID  - DM_2001_13_4_a1
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A Yu. v. Stepanishina
%T Multicriteria combinatorial linear problems: parametrisation of the optimality principle and the stability of the effective solutions
%J Diskretnaya Matematika
%D 2001
%P 43-51
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2001_13_4_a1/
%G ru
%F DM_2001_13_4_a1
V. A. Emelichev; Yu. v. Stepanishina. Multicriteria combinatorial linear problems: parametrisation of the optimality principle and the stability of the effective solutions. Diskretnaya Matematika, Tome 13 (2001) no. 4, pp. 43-51. http://geodesic.mathdoc.fr/item/DM_2001_13_4_a1/