Multicriteria combinatorial linear problems: parametrisation of the optimality principle and the stability of the effective solutions
Diskretnaya Matematika, Tome 13 (2001) no. 4, pp. 43-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a new approach to the investigation of the stability of the effective solutions of an $n$-criteria linear trajectory (on a system of subsets of a finite set) problem, where the optimality principle is determined by an integer parameter $s$ varying from 1 to $n-1$. The extreme values of the parameter correspond to the majority and Pareto optimality principles. For each value of the parameter $s$, the boundary for variation of the parameters of the partial criteria are given under which the effectiveness of trajectories is preserved.
@article{DM_2001_13_4_a1,
     author = {V. A. Emelichev and Yu. v. Stepanishina},
     title = {Multicriteria combinatorial linear problems: parametrisation of the optimality principle and the stability of the effective solutions},
     journal = {Diskretnaya Matematika},
     pages = {43--51},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2001_13_4_a1/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - Yu. v. Stepanishina
TI  - Multicriteria combinatorial linear problems: parametrisation of the optimality principle and the stability of the effective solutions
JO  - Diskretnaya Matematika
PY  - 2001
SP  - 43
EP  - 51
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2001_13_4_a1/
LA  - ru
ID  - DM_2001_13_4_a1
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A Yu. v. Stepanishina
%T Multicriteria combinatorial linear problems: parametrisation of the optimality principle and the stability of the effective solutions
%J Diskretnaya Matematika
%D 2001
%P 43-51
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2001_13_4_a1/
%G ru
%F DM_2001_13_4_a1
V. A. Emelichev; Yu. v. Stepanishina. Multicriteria combinatorial linear problems: parametrisation of the optimality principle and the stability of the effective solutions. Diskretnaya Matematika, Tome 13 (2001) no. 4, pp. 43-51. http://geodesic.mathdoc.fr/item/DM_2001_13_4_a1/

[1] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Nauka, Moskva, 1982 | MR | Zbl

[2] Berezovskii B. A., Borzenko V. I., Kempner L. N., Binarnye otnosheniya v mnogokriterialnoi optimizatsii, Nauka, Moskva, 1981 | MR | Zbl

[3] Makarov I. M., Vinogradskaya T. M., Rubchinskii A. M., Sokolov V. B., Teoriya vybora i prinyatiya reshenii, Nauka, Moskva, 1982 | MR

[4] Sholomov L. A., Logicheskie metody issledovaniya diskretnykh modelei vybora, Nauka, Moskva, 1989 | MR | Zbl

[5] Yudin D. B., Vychislitelnye metody teorii prinyatiya reshenii, Nauka, Moskva, 1989 | MR | Zbl

[6] Aizerman M. A., Aleskerov F. T., Vybor variantov: osnovy teorii, Nauka, Moskva, 1990 | MR | Zbl

[7] Moiseev N. N., Sovremennoe sostoyanie teorii issledovaniya operatsii, Nauka, Moskva, 1979 | MR

[8] Molodtsov D. A., Ustoichivost printsipov optimalnosti, Nauka, Moskva, 1987 | MR | Zbl

[9] Emelichev V. A., Girlikh E., Podkopaev D. P., “Ob ustoichivosti effektivnykh reshenii vektornoi traektornoi zadachi diskretnoi optimizatsii. I, II”, Izvestiya AN Respubliki Moldova. Matematika, 1996, no. 3, 5–16 ; 1997, no. 2, 9–25 | MR | Zbl | MR

[10] Emelichev V. A., Krichko V. N., “Ob ustoichivosti reshenii, optimalnykh po Smeilu, Pareto i Sleiteru, v vektornykh traektornykh zadachakh optimizatsii”, Izvestiya AN Respubliki Moldova. Matematika, 1998, no. 3, 81–86 | MR | Zbl

[11] Emelichev V. A., Krichko V. N., “Ob ustoichivosti paretovskogo optimuma vektornoi zadachi buleva programmirovaniya”, Diskretnaya matematika, 11:4 (1999), 27–32 | MR | Zbl

[12] Emelichev V. A., Nikulin Yu. V., “Ob ustoichivosti effektivnogo resheniya vektornoi zadachi tselochislennogo lineinogo programmirovaniya”, Dokl. NAN Belarusi, 44:4 (2000), 26–28 | MR

[13] Emelichev V. A., Pokhilko V. G., “Analiz chuvstvitelnosti effektivnykh reshenii vektornoi zadachi minimizatsii lineinykh form na mnozhestve podstanovok”, Diskretnaya matematika, 12:3 (2000), 37–48 | MR | Zbl

[14] Arrow K. J., Social choice and individual values, Wiley, New York, 1963

[15] Mirkin B. G., Problema gruppovogo vybora, Nauka, Moskva, 1974 | MR | Zbl

[16] Mulen E., Kooperativnoe prinyatie reshenii: aksiomy i modeli, Mir, Moskva, 1991 | MR

[17] Dubov Yu. A., Travkin S. I., Yakimets V. N., Mnogokriterialnye modeli formirovaniya i vyborov variantov sistemy, Nauka, Moskva, 1986 | MR

[18] Emelichev V. A., Stepanishyna Yu. V., “Stability of a majority efficient solution of a vector linear trajectorial problem”, Comput. Sci. J. Moldova, 7:3(21) (1999), 291–307 | MR | Zbl