Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2001_13_4_a0, author = {A. A. Nechaev and D. A. Mikhailov}, title = {A canonical system of generators of a unitary polynomial ideal over a commutative {Artinian} chain ring}, journal = {Diskretnaya Matematika}, pages = {3--42}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2001_13_4_a0/} }
TY - JOUR AU - A. A. Nechaev AU - D. A. Mikhailov TI - A canonical system of generators of a unitary polynomial ideal over a commutative Artinian chain ring JO - Diskretnaya Matematika PY - 2001 SP - 3 EP - 42 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2001_13_4_a0/ LA - ru ID - DM_2001_13_4_a0 ER -
%0 Journal Article %A A. A. Nechaev %A D. A. Mikhailov %T A canonical system of generators of a unitary polynomial ideal over a commutative Artinian chain ring %J Diskretnaya Matematika %D 2001 %P 3-42 %V 13 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2001_13_4_a0/ %G ru %F DM_2001_13_4_a0
A. A. Nechaev; D. A. Mikhailov. A canonical system of generators of a unitary polynomial ideal over a commutative Artinian chain ring. Diskretnaya Matematika, Tome 13 (2001) no. 4, pp. 3-42. http://geodesic.mathdoc.fr/item/DM_2001_13_4_a0/
[1] Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Mir, Moskva, 1972 | MR
[2] Bukhberger B., Kollinz Dzh., Loos R., Kompyuternaya algebra, Mir, Moskva, 1986 | MR
[3] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, 1 (1997), 139–202 | MR
[4] Nechaev A. A., “Konechnye kvazifrobeniusovy moduli, prilozheniya k kodam i lineinym rekurrentam”, Fundamentalnaya i prikladnaya matematika, 1:1 (1995), 229–254 | MR | Zbl
[5] Adams W., Loustaunau P., An Introduction to Gröbner Bases., Amer. Math. Soc., Providence, 1994 | MR
[6] Becker T., Weispfenning V., Gröbner Bases: a Computational Approach to Commutative Algebra, Springer, Berlin, 1993 | MR
[7] Buchberger B., “A note on the complexity of constructing Gröbner bases”, Lect. Notes Comput. Sci., 162, 1983, 137–145 | MR | Zbl
[8] Buchberger B., “A critical-pair/completion algorithm for finitely generated ideals in rings”, Lect. Notes Comput. Sci., 171, 1984 | MR | Zbl
[9] Byrne E., Fitzpatrick P., “Gröbner bases over Galois rings with an application to decoding alternant codes”, J. Symb. Comput., 31 (2001), 565–584 | DOI | MR | Zbl
[10] Cox D., Little J., O'Shea D., Ideals, Varietes, and Algorithms. An Introduction to Commutative Algebraic Geometry and Commutative Algebra, Springer, Berlin, 1998
[11] Jacobsson C., Lofwall C., “Standard bases for general coefficient rings and a new constructive proof of Hilbert's basis theorem”, J. Symb. Comp., 12:3 (1991), 337–371 | DOI | MR | Zbl
[12] Koblitz N., Algebraic Aspects of Cryptography, Springer, Berlin, 1997 | MR
[13] Kronecker L., Vorlesungen über Zahlentheorie, Teubner, Leipzig, 1901 | Zbl
[14] Krull W., “Algebraische Theorie der Ringe. II”, Math. Ann., 91 (1923), 1–46 | DOI | MR
[15] Snapper E., “Completely primary rings. IV”, Ann. Math., 55:1 (1952), 46–64 | DOI | MR | Zbl
[16] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl
[17] Kurakin V. L., Mikhalev A. V., Nechaev A. A., “Polylinear recurring sequences over a bimodule”, Proc. 12th Int. Conf. Formal Power Series Alg. Comb. FPSAC'00 (MSU, June 6–30, 2000.) | MR
[18] Landau S., “Polynomial time algorithms for Galois groups”, Lect. Notes Comput. Sci., 174, 1984, 225–236 | MR | Zbl
[19] Mikhailov D. A., “Polylinear shift registers and standard bases”, Proc. 12th Int. Conf. Formal Power Series Alg. Comb. FPSAC'00 (MSU, June 6–30), 2000 | MR
[20] Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad kommutativnymi koltsami”, Diskretnaya matematika, 3:4 (1991), 105–127
[21] Norton G. ., Salagean A., “Strong Gröbner bases and cyclic codes over a finite-chain ring”, Proc. Intern. Workshop on Coding and Cryptography (Paris, Jan. 8-12, 2001) | MR
[22] Sakata S., “Synthesis of two-dimensional linear feedback shift-registers and Gröbner bases”, Lect. Notes Comput. Sci., 356, 1989, 394–407 | MR | Zbl
[23] Sakata S., “A Gröbner basis and a minimal polynomial set of a finite $nD$ array”, Lect. Notes Comput. Sci., 508, 1991, 280–291 | MR | Zbl
[24] Sakata S., “Two-dimensional shift register synthesis and Groebner bases for polynomial ideals over an integer residue ring”, Discr. Appl. Math., 33:1–3 (1991), 191–203 | DOI | MR | Zbl
[25] Samuel P., Zarisski O., Commutative Algebra, Springer, Berlin, 1979