A canonical system of generators of a unitary polynomial ideal over a commutative Artinian chain ring
Diskretnaya Matematika, Tome 13 (2001) no. 4, pp. 3-42
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be a commutative Artinian chain ring. An ideal $I$ of the
ring $\mathcal R _ k=R[x_1,\ldots,x_k]$ is called monic if the quotient ring
$\mathcal R_k \setminus I$ is a finitely generated $R$-module. For such
ideal a standard basis, called the Canonical Generating System (CGS),
is constructed. This basis inherits some good properties of CGS
of an ideal of $R[x]$ and the Gröbner basis of a
polynomial ideal over a field. In particular, using
CGS, it is possible to present an algorithm, which is simpler than the
exhaustive search algorithm, for constructing cosets of $\mathcal R_k$
modulo $I$. The CGS allows us to check whether the quotient ring
$\mathcal R_k\setminus I$ is a free $R$-module. Moreover, if $R$ is a finite
ring there is a formula for calculation of $|\mathcal R_k\setminus I|$ that
depends only on numerical parameters of CGS. Applying CGS, we
create a generating system of a family of $k$-linear recurring sequences
with characteristic ideal $I$ and a criterion of existence of a $k$-linear shift
register with this characteristic ideal.
This research was supported by the Russian Foundation for Basic Research, grants
99–01–00941 and 99–01–00382.
@article{DM_2001_13_4_a0,
author = {A. A. Nechaev and D. A. Mikhailov},
title = {A canonical system of generators of a unitary polynomial ideal over a commutative {Artinian} chain ring},
journal = {Diskretnaya Matematika},
pages = {3--42},
publisher = {mathdoc},
volume = {13},
number = {4},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2001_13_4_a0/}
}
TY - JOUR AU - A. A. Nechaev AU - D. A. Mikhailov TI - A canonical system of generators of a unitary polynomial ideal over a commutative Artinian chain ring JO - Diskretnaya Matematika PY - 2001 SP - 3 EP - 42 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2001_13_4_a0/ LA - ru ID - DM_2001_13_4_a0 ER -
%0 Journal Article %A A. A. Nechaev %A D. A. Mikhailov %T A canonical system of generators of a unitary polynomial ideal over a commutative Artinian chain ring %J Diskretnaya Matematika %D 2001 %P 3-42 %V 13 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2001_13_4_a0/ %G ru %F DM_2001_13_4_a0
A. A. Nechaev; D. A. Mikhailov. A canonical system of generators of a unitary polynomial ideal over a commutative Artinian chain ring. Diskretnaya Matematika, Tome 13 (2001) no. 4, pp. 3-42. http://geodesic.mathdoc.fr/item/DM_2001_13_4_a0/