A canonical system of generators of a unitary polynomial ideal over a commutative Artinian chain ring
Diskretnaya Matematika, Tome 13 (2001) no. 4, pp. 3-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a commutative Artinian chain ring. An ideal $I$ of the ring $\mathcal R _ k=R[x_1,\ldots,x_k]$ is called monic if the quotient ring $\mathcal R_k \setminus I$ is a finitely generated $R$-module. For such ideal a standard basis, called the Canonical Generating System (CGS), is constructed. This basis inherits some good properties of CGS of an ideal of $R[x]$ and the Gröbner basis of a polynomial ideal over a field. In particular, using CGS, it is possible to present an algorithm, which is simpler than the exhaustive search algorithm, for constructing cosets of $\mathcal R_k$ modulo $I$. The CGS allows us to check whether the quotient ring $\mathcal R_k\setminus I$ is a free $R$-module. Moreover, if $R$ is a finite ring there is a formula for calculation of $|\mathcal R_k\setminus I|$ that depends only on numerical parameters of CGS. Applying CGS, we create a generating system of a family of $k$-linear recurring sequences with characteristic ideal $I$ and a criterion of existence of a $k$-linear shift register with this characteristic ideal. This research was supported by the Russian Foundation for Basic Research, grants 99–01–00941 and 99–01–00382.
@article{DM_2001_13_4_a0,
     author = {A. A. Nechaev and D. A. Mikhailov},
     title = {A canonical system of generators of a unitary polynomial ideal over a commutative {Artinian} chain ring},
     journal = {Diskretnaya Matematika},
     pages = {3--42},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2001_13_4_a0/}
}
TY  - JOUR
AU  - A. A. Nechaev
AU  - D. A. Mikhailov
TI  - A canonical system of generators of a unitary polynomial ideal over a commutative Artinian chain ring
JO  - Diskretnaya Matematika
PY  - 2001
SP  - 3
EP  - 42
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2001_13_4_a0/
LA  - ru
ID  - DM_2001_13_4_a0
ER  - 
%0 Journal Article
%A A. A. Nechaev
%A D. A. Mikhailov
%T A canonical system of generators of a unitary polynomial ideal over a commutative Artinian chain ring
%J Diskretnaya Matematika
%D 2001
%P 3-42
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2001_13_4_a0/
%G ru
%F DM_2001_13_4_a0
A. A. Nechaev; D. A. Mikhailov. A canonical system of generators of a unitary polynomial ideal over a commutative Artinian chain ring. Diskretnaya Matematika, Tome 13 (2001) no. 4, pp. 3-42. http://geodesic.mathdoc.fr/item/DM_2001_13_4_a0/

[1] Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Mir, Moskva, 1972 | MR

[2] Bukhberger B., Kollinz Dzh., Loos R., Kompyuternaya algebra, Mir, Moskva, 1986 | MR

[3] Kuzmin A. S., Kurakin V. L., Nechaev A. A., “Psevdosluchainye i polilineinye posledovatelnosti”, Trudy po diskretnoi matematike, 1 (1997), 139–202 | MR

[4] Nechaev A. A., “Konechnye kvazifrobeniusovy moduli, prilozheniya k kodam i lineinym rekurrentam”, Fundamentalnaya i prikladnaya matematika, 1:1 (1995), 229–254 | MR | Zbl

[5] Adams W., Loustaunau P., An Introduction to Gröbner Bases., Amer. Math. Soc., Providence, 1994 | MR

[6] Becker T., Weispfenning V., Gröbner Bases: a Computational Approach to Commutative Algebra, Springer, Berlin, 1993 | MR

[7] Buchberger B., “A note on the complexity of constructing Gröbner bases”, Lect. Notes Comput. Sci., 162, 1983, 137–145 | MR | Zbl

[8] Buchberger B., “A critical-pair/completion algorithm for finitely generated ideals in rings”, Lect. Notes Comput. Sci., 171, 1984 | MR | Zbl

[9] Byrne E., Fitzpatrick P., “Gröbner bases over Galois rings with an application to decoding alternant codes”, J. Symb. Comput., 31 (2001), 565–584 | DOI | MR | Zbl

[10] Cox D., Little J., O'Shea D., Ideals, Varietes, and Algorithms. An Introduction to Commutative Algebraic Geometry and Commutative Algebra, Springer, Berlin, 1998

[11] Jacobsson C., Lofwall C., “Standard bases for general coefficient rings and a new constructive proof of Hilbert's basis theorem”, J. Symb. Comp., 12:3 (1991), 337–371 | DOI | MR | Zbl

[12] Koblitz N., Algebraic Aspects of Cryptography, Springer, Berlin, 1997 | MR

[13] Kronecker L., Vorlesungen über Zahlentheorie, Teubner, Leipzig, 1901 | Zbl

[14] Krull W., “Algebraische Theorie der Ringe. II”, Math. Ann., 91 (1923), 1–46 | DOI | MR

[15] Snapper E., “Completely primary rings. IV”, Ann. Math., 55:1 (1952), 46–64 | DOI | MR | Zbl

[16] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl

[17] Kurakin V. L., Mikhalev A. V., Nechaev A. A., “Polylinear recurring sequences over a bimodule”, Proc. 12th Int. Conf. Formal Power Series Alg. Comb. FPSAC'00 (MSU, June 6–30, 2000.) | MR

[18] Landau S., “Polynomial time algorithms for Galois groups”, Lect. Notes Comput. Sci., 174, 1984, 225–236 | MR | Zbl

[19] Mikhailov D. A., “Polylinear shift registers and standard bases”, Proc. 12th Int. Conf. Formal Power Series Alg. Comb. FPSAC'00 (MSU, June 6–30), 2000 | MR

[20] Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad kommutativnymi koltsami”, Diskretnaya matematika, 3:4 (1991), 105–127

[21] Norton G. ., Salagean A., “Strong Gröbner bases and cyclic codes over a finite-chain ring”, Proc. Intern. Workshop on Coding and Cryptography (Paris, Jan. 8-12, 2001) | MR

[22] Sakata S., “Synthesis of two-dimensional linear feedback shift-registers and Gröbner bases”, Lect. Notes Comput. Sci., 356, 1989, 394–407 | MR | Zbl

[23] Sakata S., “A Gröbner basis and a minimal polynomial set of a finite $nD$ array”, Lect. Notes Comput. Sci., 508, 1991, 280–291 | MR | Zbl

[24] Sakata S., “Two-dimensional shift register synthesis and Groebner bases for polynomial ideals over an integer residue ring”, Discr. Appl. Math., 33:1–3 (1991), 191–203 | DOI | MR | Zbl

[25] Samuel P., Zarisski O., Commutative Algebra, Springer, Berlin, 1979