A canonical system of generators of a unitary polynomial ideal over a commutative Artinian chain ring
Diskretnaya Matematika, Tome 13 (2001) no. 4, pp. 3-42

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a commutative Artinian chain ring. An ideal $I$ of the ring $\mathcal R _ k=R[x_1,\ldots,x_k]$ is called monic if the quotient ring $\mathcal R_k \setminus I$ is a finitely generated $R$-module. For such ideal a standard basis, called the Canonical Generating System (CGS), is constructed. This basis inherits some good properties of CGS of an ideal of $R[x]$ and the Gröbner basis of a polynomial ideal over a field. In particular, using CGS, it is possible to present an algorithm, which is simpler than the exhaustive search algorithm, for constructing cosets of $\mathcal R_k$ modulo $I$. The CGS allows us to check whether the quotient ring $\mathcal R_k\setminus I$ is a free $R$-module. Moreover, if $R$ is a finite ring there is a formula for calculation of $|\mathcal R_k\setminus I|$ that depends only on numerical parameters of CGS. Applying CGS, we create a generating system of a family of $k$-linear recurring sequences with characteristic ideal $I$ and a criterion of existence of a $k$-linear shift register with this characteristic ideal. This research was supported by the Russian Foundation for Basic Research, grants 99–01–00941 and 99–01–00382.
@article{DM_2001_13_4_a0,
     author = {A. A. Nechaev and D. A. Mikhailov},
     title = {A canonical system of generators of a unitary polynomial ideal over a commutative {Artinian} chain ring},
     journal = {Diskretnaya Matematika},
     pages = {3--42},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2001_13_4_a0/}
}
TY  - JOUR
AU  - A. A. Nechaev
AU  - D. A. Mikhailov
TI  - A canonical system of generators of a unitary polynomial ideal over a commutative Artinian chain ring
JO  - Diskretnaya Matematika
PY  - 2001
SP  - 3
EP  - 42
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2001_13_4_a0/
LA  - ru
ID  - DM_2001_13_4_a0
ER  - 
%0 Journal Article
%A A. A. Nechaev
%A D. A. Mikhailov
%T A canonical system of generators of a unitary polynomial ideal over a commutative Artinian chain ring
%J Diskretnaya Matematika
%D 2001
%P 3-42
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2001_13_4_a0/
%G ru
%F DM_2001_13_4_a0
A. A. Nechaev; D. A. Mikhailov. A canonical system of generators of a unitary polynomial ideal over a commutative Artinian chain ring. Diskretnaya Matematika, Tome 13 (2001) no. 4, pp. 3-42. http://geodesic.mathdoc.fr/item/DM_2001_13_4_a0/