$\Omega$-foliated formations and Fitting classes of finite groups
Diskretnaya Matematika, Tome 13 (2001) no. 3, pp. 125-144

Voir la notice de l'article provenant de la source Math-Net.Ru

A new functional approach to the study of classes of groups is proposed, resulting in description of all formations and Fitting classes of finite groups in the language of functions. The $\Omega$-foliated formations $\Omega F(f,\varphi)$ and $\Omega$-foliated Fitting classes $\Omega F(f,\varphi)$ with satellite $f$ and direction $\varphi$ are constructed. To each satellite $f$ there corresponds an infinite set of various directions $\varphi$. One direction leads to the previously considered $\Omega$-composite formations. In this way the $\Omega$-canonical and $\Omega$-free formations and Fitting classes are obtained. For a fixed direction $\varphi$ the structure of the minimal satellite $f$ is obtained.
@article{DM_2001_13_3_a8,
     author = {V. A. Vedernikov and M. M. Sorokina},
     title = {$\Omega$-foliated formations and {Fitting} classes of finite groups},
     journal = {Diskretnaya Matematika},
     pages = {125--144},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2001_13_3_a8/}
}
TY  - JOUR
AU  - V. A. Vedernikov
AU  - M. M. Sorokina
TI  - $\Omega$-foliated formations and Fitting classes of finite groups
JO  - Diskretnaya Matematika
PY  - 2001
SP  - 125
EP  - 144
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2001_13_3_a8/
LA  - ru
ID  - DM_2001_13_3_a8
ER  - 
%0 Journal Article
%A V. A. Vedernikov
%A M. M. Sorokina
%T $\Omega$-foliated formations and Fitting classes of finite groups
%J Diskretnaya Matematika
%D 2001
%P 125-144
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2001_13_3_a8/
%G ru
%F DM_2001_13_3_a8
V. A. Vedernikov; M. M. Sorokina. $\Omega$-foliated formations and Fitting classes of finite groups. Diskretnaya Matematika, Tome 13 (2001) no. 3, pp. 125-144. http://geodesic.mathdoc.fr/item/DM_2001_13_3_a8/