The Poisson limit theorem for the number of noncollinear solutions of a system of random equations of a special form
Diskretnaya Matematika, Tome 13 (2001) no. 3, pp. 81-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the properties of the number $\nu$ of non-collinear non-zero solutions of a random system of equations of the following form. The left-hand sides of these equations are some functions of linear expressions of the form $$ l_s=a_{s,1}x_1\oplus\ldots\oplus a_{s,n}x_n $$ with random coefficients and unknowns $x_1,\ldots,x_n$. The right-hand sides are equal to zero. The system is considered over the field $\mathit{GF}(q)$. We assume that the coefficients in $l_s$ are independent and have the uniform distribution. In this paper, we obtain inequalities for the factorial moments of the random variable $\nu$ and give sufficient conditions of validity of the Poisson limit theorem for $\nu$. The research was supported by the Russian Foundation for Basic Research, grant 99–01–00012, and by the Foundation of the President of the Russian Federation for Support of Scientific Schools, grant 00–15–96136.
@article{DM_2001_13_3_a5,
     author = {V. G. Mikhailov},
     title = {The {Poisson} limit theorem for the number of noncollinear solutions of a system of random equations of a special form},
     journal = {Diskretnaya Matematika},
     pages = {81--90},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2001_13_3_a5/}
}
TY  - JOUR
AU  - V. G. Mikhailov
TI  - The Poisson limit theorem for the number of noncollinear solutions of a system of random equations of a special form
JO  - Diskretnaya Matematika
PY  - 2001
SP  - 81
EP  - 90
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2001_13_3_a5/
LA  - ru
ID  - DM_2001_13_3_a5
ER  - 
%0 Journal Article
%A V. G. Mikhailov
%T The Poisson limit theorem for the number of noncollinear solutions of a system of random equations of a special form
%J Diskretnaya Matematika
%D 2001
%P 81-90
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2001_13_3_a5/
%G ru
%F DM_2001_13_3_a5
V. G. Mikhailov. The Poisson limit theorem for the number of noncollinear solutions of a system of random equations of a special form. Diskretnaya Matematika, Tome 13 (2001) no. 3, pp. 81-90. http://geodesic.mathdoc.fr/item/DM_2001_13_3_a5/

[1] Mikhailov V. G., “Predelnye teoremy dlya chisla nenulevykh reshenii odnoi sistemy sluchainykh uravnenii nad polem $\mathit{GF}(2)$”, Teoriya veroyatnostei i ee primeneniya, 43:3 (1998), 598–606

[2] Mikhailov V. G., “Predelnye teoremy dlya chisla nenulevykh reshenii odnoi sistemy sluchainykh uravnenii nad polem $\mathit{GF}(2)$”, Diskretnaya matematika, 12:1 (2000), 70–81 | Zbl

[3] Kovalenko I. N., Levitskaya A. A., Savchuk M. N., Izbrannye zadachi veroyatnostnoi kombinatoriki, Naukova Dumka, Kiev, 1986 | MR | Zbl

[4] Kolchin V. F., Sistemy sluchainykh uravnenii, MIEM, Moskva, 1988

[5] Balakin G. V., “Vvedenie v teoriyu sluchainykh sistem uravnenii”, Trudy po diskretnoi matematike, 1 (1997), 1–18 | MR | Zbl

[6] Balakin G. V., “Sistemy sluchainykh sistem uravnenii nad konechnym polem”, Trudy po diskretnoi matematike, 2 (1998), 21–37 | MR | Zbl

[7] Kopyttsev V. A., “O raspredelenii chisla reshenii sluchainykh zavedomo sovmestnykh sistem uravnenii”, Teoriya veroyatnostei i ee primeneniya, 40:2 (1995), 430–437 | MR

[8] Mikhailov V. G., “Predelnye teoremy dlya sluchainogo pokrytiya konechnogo mnozhestva i dlya chisla reshenii sistemy sluchainykh uravnenii”, Teoriya veroyatnostei i ee primeneniya, 41:2 (1996), 272–283 | MR | Zbl

[9] Kopyttsev V. A., “Predelnye teoremy dlya chisla reshenii sistemy sluchainykh uravnenii”, Teoriya veroyatnostei i ee primeneniya, 45:1 (2000), 52–72 | MR

[10] Vatutin V. A., Mikhailov V. G., “Predelnye teoremy dlya chisla pustykh yacheek v ravnoveroyatnoi skheme razmescheniya chastits komplektami”, Teoriya veroyatnostei i ee primeneniya, 27:4 (1982), 684–692 | MR | Zbl