On the sorting complexity of Cartesian products of partially ordered sets
Diskretnaya Matematika, Tome 13 (2001) no. 3, pp. 57-74
We study the complexity $L(M_n)$ of algorithms for sorting the partially ordered set $M_n$, which is isomorphic to the Cartesian product $$ K_1\times\ldots\times K_n, $$ where all $K_i$ are taken from some finite family, have a unique maximum element, and are prime with respect to the Cartesian product. For the set $\{M_n\}$, as $n\to\infty$, we obtain the estimates \begin{align*} L(M_n)\gtrsim|M_n|\log_{2}|M_n|, \\ L(M_n)\lesssim(|K_1|+\ldots+|K_n|)|M_n|. \end{align*} Besides, we prove that for a partially ordered set with one maximum element the Cartesian decomposition into prime factors is unique up to a permutation of the factors.
@article{DM_2001_13_3_a3,
author = {Yu. B. Nikitin},
title = {On the sorting complexity of {Cartesian} products of partially ordered sets},
journal = {Diskretnaya Matematika},
pages = {57--74},
year = {2001},
volume = {13},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2001_13_3_a3/}
}
Yu. B. Nikitin. On the sorting complexity of Cartesian products of partially ordered sets. Diskretnaya Matematika, Tome 13 (2001) no. 3, pp. 57-74. http://geodesic.mathdoc.fr/item/DM_2001_13_3_a3/
[1] Akho A. V., Khopkroft Dzh., Ulman Dzh., Postroenie i analiz vychislitelnykh algoritmov, Mir, Moskva, 1979 | MR | Zbl
[2] Knut D., Iskusstvo programmirovaniya dlya EVM. Sortirovka i poisk, t. 3., Mir, Moskva, 1978 | MR | Zbl
[3] Morozenko V. V., “O slozhnosti sortirovki bulevoi algebry”, Diskretnaya matematika, 3:1 (1991), 42–47 | Zbl
[4] Borovkov A. A., Teoriya veroyatnostei, Nauka, Moskva, 1986 | MR | Zbl
[5] Faigle U., Turan G., “Sorting and recognition problems for ordered sets”, SIAM J. Comput., 17:1 (1988), 100–113 | DOI | MR | Zbl