On the semigroup of transformations of a finite set generated by random generators
Diskretnaya Matematika, Tome 13 (2001) no. 2, pp. 99-110
We consider the semigroup generated by random mappings and random bijective mappings of a finite set $\Omega_n$ of cardinality $n$ into itself. We study the question when this semigroup includes all mappings of $\Omega_n$ into itself with a fixed cardinality $k$ of the image of the set $\Omega_n$. As $n\to\infty$, the ranges of $k$ are given where this inclusion holds with probability tending to zero or one, and two domains of values of $k$ where the inclusion holds with intermediate probability.
@article{DM_2001_13_2_a4,
author = {M. V. Fedyukin},
title = {On the semigroup of transformations of a finite set generated by random generators},
journal = {Diskretnaya Matematika},
pages = {99--110},
year = {2001},
volume = {13},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2001_13_2_a4/}
}
M. V. Fedyukin. On the semigroup of transformations of a finite set generated by random generators. Diskretnaya Matematika, Tome 13 (2001) no. 2, pp. 99-110. http://geodesic.mathdoc.fr/item/DM_2001_13_2_a4/
[1] Viktorova I. I., Sevastyanov B. A., “O predelnom povedenii maksimuma v polinomialnoi skheme”, Matem. zametki, 1:3 (1967), 331–338 | MR | Zbl
[2] Kolchin V. F., Sevastyanov B. A., Chistyakov V. P., Sluchainye razmescheniya, Nauka, Moskva, 1976 | MR | Zbl
[3] Kolchin V. F., Sluchainye otobrazheniya, Nauka, Moskva, 1984 | MR
[4] Sachkov V. N., Kombinatornye metody diskretnoi matematiki, Nauka, Moskva, 1977
[5] Sachkov V. N., “Gruppy podstanovok i polugruppy preobrazovanii s zadannym chislom obrazuyuschikh”, Trudy po diskretnoi matematike, 3, 2000, 215–234
[6] Dixon J. D., “The probability of generating the symmetric group”, Math. Z., 110:3 (1969), 199–205 | DOI | MR | Zbl