The asymptotic number of maps on compact orientable surfaces
Diskretnaya Matematika, Tome 13 (2001) no. 2, pp. 89-98
Voir la notice de l'article provenant de la source Math-Net.Ru
We get an asymptotic formula for the sum
$$
Z_{N}=\sum_{b+p=N}F_{b,p}y^p,
$$
where
$$
F_{b,p}=\sum_{\rho=0}^\infty F_{b,p}(\rho),
$$
and $F_{b,p}(\rho)$ is the number of
maps of genus $\rho$ with $p+1$ vertices and $p+b$ edges.
@article{DM_2001_13_2_a3,
author = {M. A. Krikun and V. A. Malyshev},
title = {The asymptotic number of maps on compact orientable surfaces},
journal = {Diskretnaya Matematika},
pages = {89--98},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2001_13_2_a3/}
}
M. A. Krikun; V. A. Malyshev. The asymptotic number of maps on compact orientable surfaces. Diskretnaya Matematika, Tome 13 (2001) no. 2, pp. 89-98. http://geodesic.mathdoc.fr/item/DM_2001_13_2_a3/