The asymptotic number of maps on compact orientable surfaces
Diskretnaya Matematika, Tome 13 (2001) no. 2, pp. 89-98

Voir la notice de l'article provenant de la source Math-Net.Ru

We get an asymptotic formula for the sum $$ Z_{N}=\sum_{b+p=N}F_{b,p}y^p, $$ where $$ F_{b,p}=\sum_{\rho=0}^\infty F_{b,p}(\rho), $$ and $F_{b,p}(\rho)$ is the number of maps of genus $\rho$ with $p+1$ vertices and $p+b$ edges.
@article{DM_2001_13_2_a3,
     author = {M. A. Krikun and V. A. Malyshev},
     title = {The asymptotic number of maps on compact orientable surfaces},
     journal = {Diskretnaya Matematika},
     pages = {89--98},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2001_13_2_a3/}
}
TY  - JOUR
AU  - M. A. Krikun
AU  - V. A. Malyshev
TI  - The asymptotic number of maps on compact orientable surfaces
JO  - Diskretnaya Matematika
PY  - 2001
SP  - 89
EP  - 98
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2001_13_2_a3/
LA  - ru
ID  - DM_2001_13_2_a3
ER  - 
%0 Journal Article
%A M. A. Krikun
%A V. A. Malyshev
%T The asymptotic number of maps on compact orientable surfaces
%J Diskretnaya Matematika
%D 2001
%P 89-98
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2001_13_2_a3/
%G ru
%F DM_2001_13_2_a3
M. A. Krikun; V. A. Malyshev. The asymptotic number of maps on compact orientable surfaces. Diskretnaya Matematika, Tome 13 (2001) no. 2, pp. 89-98. http://geodesic.mathdoc.fr/item/DM_2001_13_2_a3/