@article{DM_2001_13_2_a3,
author = {M. A. Krikun and V. A. Malyshev},
title = {The asymptotic number of maps on compact orientable surfaces},
journal = {Diskretnaya Matematika},
pages = {89--98},
year = {2001},
volume = {13},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2001_13_2_a3/}
}
M. A. Krikun; V. A. Malyshev. The asymptotic number of maps on compact orientable surfaces. Diskretnaya Matematika, Tome 13 (2001) no. 2, pp. 89-98. http://geodesic.mathdoc.fr/item/DM_2001_13_2_a3/
[1] Walsh T., Lehman A., “Counting rooted maps by genus. I”, J. Comb. Theory, 13 (1972), 192–218 | DOI | MR | Zbl
[2] Wimp J., Zeilbreger D., “Resurrecting the asymptotics of linear recurrences”, J. Math. Anal. and Appl., 111 (1985), 162–176 | DOI | MR | Zbl
[3] Tutte W., “The enumerative theory of planar maps”, A Survey of Combinatorial Theory, 1973, 437–448, North Holland, Amsterdam | MR
[4] Goulden I., Jackson D., Combinatorial Enumeration, Wiley, New York, 1983 | MR | Zbl
[5] Bender E., Canfield E., Richmond L., “The asymptotic number of rooted maps on a surface. II. Enumeration by vertices and faces”, J. Comb. Theory., 63 (1993), 318–329 | DOI | MR | Zbl
[6] Edmonds J., “A combinatorial representation for polyhedral surfaces”, Notices Amer. Math. Soc., 7:646 (1960)
[7] Fernandez R., Frolich J., Sokal A., Random Walks, Critical Phenomena, and Triviality in Quantum Fields, Springer, Berlin, 1992