Goppa codes on a family of algebraic number fields
Diskretnaya Matematika, Tome 13 (2001) no. 2, pp. 14-34
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe some properties of the geometric Goppa codes on the curve determined by
the equation
$$
y^s=(x^{q^{(n-u)/2}-1}+1)^a (x^{q^{(n+u)/2}-1}+1)^b
$$
over a finite field $K=F_{q^n}$ with an arbitrary odd $q$, $n>1$,
where $s=a+b$, $s\mid q-1$,
$u=1$ for odd $n$ and $u=2$ for even $n$.
We find the number of the $F_{q^n}$-rational points of the curve and
the degrees and ramification indexes of the maximal ideals of the
discrete valuation rings of the field $K(x,y)$.
In some cases, the bases of the codes are found.
@article{DM_2001_13_2_a1,
author = {M. M. Glukhov (jr.)},
title = {Goppa codes on a family of algebraic number fields},
journal = {Diskretnaya Matematika},
pages = {14--34},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2001_13_2_a1/}
}
M. M. Glukhov (jr.). Goppa codes on a family of algebraic number fields. Diskretnaya Matematika, Tome 13 (2001) no. 2, pp. 14-34. http://geodesic.mathdoc.fr/item/DM_2001_13_2_a1/